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Chapter 1: Abstract

In this thesis, we study plane curves C defined by one polynomial equation f(x, y) = 0

on the plane C2. We can factor the polynomial f(x, y) =
∏

fi(x, y)
βi where the polynomials

fi(x, y) are irreducible, and consider the irreducible components of C defined by the equations

fi = 0. The curve C might be non-reduced, and the multiplicity of the component Ci equals

βi.

The main object in this thesis is the Hilbert scheme of n points on C defined as the moduli

space of ideals I in the quotient ring C[x, y]/(f(x, y)) whose colength is n.

In Chapter 3, we classify the irreducible components of the Hilbert scheme of points on C.

We prove that all the components are indexed by multi-partitions λ of n satisfying specific

combinatorial conditions. We also prove that all the irreducible components have the same

dimension n, and we give an explicit formula for the multiplicity of each component in terms

of the multi-partition λ and the multiplicities of the curve components. This part is based

on the paper [10].

We further classify the irreducible components of the nested Hilbert scheme of points on

the curve C [n,n+1]. We prove that all the components have the same dimension n, and are

indexed by multi-partitions of n satisfying specific combinatorial conditions.
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Chapter 2: Background

In this chapter, we define the Hilbert scheme on the affine plane C2 and on a plane curve

C, and other relevant constructions that we work with. We have a warning that this thesis

uses many notations interchangeably. For example, the Hilbert scheme of points on C2, are

denoted interchangeably by both Hilbn(C2) and (C2)[n].

1. Hilbert scheme of points

Definition 1.1. The Hilbert scheme of n points on the affine plane C2, denoted by Hilbn(C2)

or (C2)[n], is the moduli space of ideals I in the polynomial ring of two variables C[x, y]

satisfying the condition that the quotient ring C[x, y]/I has dimension n as a vector space

over C.

The dimension of the quotient ring C[x, y]/I is also called the colength of the ideal I.

Example 1.2. Consider the Hilbert scheme of 1 point on C2, denoted by Hilb1(C2).

An ideal I has colength 1 if and only if it is maximal in the polynomial ring C[x, y], and

by Nullstellensatz the ideal I is equal to (x− a, y − b) for some point (a, b) ∈ C2. Therefore

I is the defining ideal for the point (a, b) and we can identify Hilb1(C2) = C2.

Example 1.3. Let P1, ....Pn be n distinct points on C2, and I an ideal defining their union,

i.e. intersection of ideals I = ∩i(x−xPi
, y−yPi

), where xPi
and yPi

are the x and y coordinates

of the point Pi.

We claim the following: The ideal I has colength n, and thus defines a point in Hilbn(C2).
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Define the map ϕ to be the ring morphism from C[x, y] to Cn by sending a polynomial

f(x, y) ∈ C[x, y] to the tuple (f(P1), ..., f(Pn)). The kernel of the map ϕ is the ideal in C[x, y]

such that (f(P1), ..., f(Pn)) = (0, ..., 0). This kernel is exactly the ideal I = ∩i(x−xPi
, y−yPi

).

On the other hand, we know that the image of ϕ is Cn because ϕ is surjective. By the

isomorphism theorem, C[x, y]/I ∼= Cn, so the ideal I has colength n.

Define W to be the set of all possible collections on n unordered distinct points P1, ..., Pn

on C2. By the above argument, this corresponds to a subset of Hilbn(C).

Theorem 1.4. [5]: W is a dense open subset of Hilbn(C).

Example 1.5. We classify all the ideals in the Hilbert scheme of 2 points on C2, denoted

by Hilbn(C2) in Section 4.

For more examples of monomial ideals see Section 1.3 and Example 1.19.

Theorem 1.6. [4] The Hilbert scheme of n points on C2 is smooth of dimension 2n.

1.1. Hilbert-Chow morphism.

Definition 1.7. The n-th symmetric product of C2, denoted by Symn(C2), is defined to

be (C2)n, the moduli space of ordered n tuples of points, modulo the action of the n-th

symmetric group Sn by permuting the points.

Definition 1.8. The Hilbert-Chow map, denoted by π, sending an ideal I ∈ (C2)[n] to the

n-th symmetric product of the affine plane Symn(C2), is defined as follows.
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For each I ∈ (C2)[n], the scheme S = Spec(C[x, y]/I) has a finite number of points p1, ..., ps.

We assign to each point pi, i = 1, ..., s a multiplicity mi that is equal to the length of the

local ring Opi,S = (C[x, y]/I)pi localized at each pi. These multiplicities m1 + ... +ms sum

up to n.

Define the image of an ideal I under the Hilbert-Chow map as π(I) = m1 ·p1+ ...+ms ·ps,

the unordered sum of points taking product with their corresponding multiplicities.

Theorem 1.9. [5] The Hilbert-Chow morphism is projective.

Theorem 1.10. [4]The Hilbert scheme of points Hilbn(C2) is a resolution of singularities of

the symmetric product Symn(C2).

1.2. Punctual Hilbert scheme of points. There is an important subscheme of the Hilbert

scheme of points on the plane, being the punctual Hilbert scheme of points on the plane.

Definition 1.11. The punctual Hilbert scheme of points on the plane C2, denoted by (C2)
[n]
0 ,

or Hilbn(C2, 0), is the subscheme of (C2)[n] where each ideal I satisfy Spec(C[x, y]/I) =

n · (0, 0), and (0, 0) denotes the origin of the affine plane C2.

In other words, the punctual Hilbert scheme is a subscheme of the Hilbert scheme of points

on the plane that only contains the ideals whose vanishing locus is supported at the point

(0, 0). Unlike to the dense open subset W of ideals I in the Hilbert scheme of points where

Spec(C[x, y]/I) is a collection of n distinct points, the punctual Hilbert scheme Hilbn(C2, 0)
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contains the information of the scheme structure of the Hilbert scheme as those n distinct

points collide into one point.

Example 1.12. There is only one maximal ideal (x, y) of the polynomial ring C[x, y] that

vanish at the point (0, 0). So Hilb1(C2, 0) is a point.

Example 1.13. The punctual Hilbert scheme of 2 points on the plane, Hilb2(C2, 0) is the

collection of ideals {(x2, y − ax)|a ∈ C} ∪ {(x, y2)}, which is isomorphic to CP1.

We cite a theorem due to Briançon.

Theorem 1.14. [3]The punctual Hilbert scheme of points on the plane Hilbn(C2, 0) is irre-

ducible of dimension n− 1.

1.3. Affine charts covering Hilbn(C2). We first cite Haiman [5] for the classical construc-

tion of the coordinate charts on the Hilbert scheme of points Hilbn(C2), giving it the structure

of a smooth and irreducible manifold of dimension 2n.

Definition 1.15. For a partition µ of n, we associate to it a Young diagram and a set of

monomials in variables x and y.

Say the partition µ has s parts µ1, ..., µs, and that µ1 ≥ µ2 ≥ ... ≥ µs. Put µ1 boxes at

the bottom row of this Young tableau, µ2 boxes at the second row of this Young diagram,

etc, and put µs boxes at the top of this Young diagram.
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Next, to each box in the Young diagram we associate a monomial xiyj such that (i, j)

is the pair of coordinates of each box in the Young diagram. The coordinates (i, j) start

at (0, 0) at the South-west corner, and increase by 1 at a time in both the East and North

direction.

Call this collection of monomials Bµ.

Example 1.16. For example, for the partition µ = (4, 2, 1) of 7, we have the following

Young diagram.

And we have the following collection of monomials.

y2

y xy

1 x x2 x3

And B(4,2,1) = {1, x, x2, x3, y, xy, y2}.

Definition 1.17. For each partition µ, we define Uµ to be the set of ideals I ∈ Hilbn(C2)

such that the quotient ring C[x, y]/I as a vector space over C has basis Bµ + I.

Definition 1.18. Given a partition µ, the monomial ideal Iµ is the ideal generated by

monomials not in Bµ. Notice that it’s enough to take the monomials at the outside corners

of the Young diagram of the partition µ.

Example 1.19. The monomial ideal I(4,2,1) is generated by (x4, x2y, xy2, y3).
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Example 1.20. The ideal (x4, x2y, xy2, y3) is in U(4,2,1).

Example 1.21. The ideals (x2, y) and (x2 − 4x− 3, y) are in U(2), because 1 and x form a

basis of C[x, y]/I when I is either one of the ideals given above.

The ideals (x, y2) and (x − 3, y2 − 6y − 7) are in U(1,1), because 1 and y form a basis of

C[x, y]/I when I is either one of the ideals given above.

Both (2) and (1, 1) are partitions of 2.

Example 1.22. All ideals I in the chart U(n), where (n) is the one-row partition of n boxes,

are ideals I ∈ Hilbn(C2) such that 1, x, .., xn−1 form a basis of C[x, y]/I.

By expanding xn and y modulo I in this basis, all of the ideals I ∈ U(n) can be written as

I = (xn − an−1x
n−1 − ...− a1x− a0, y− bn−1x

n−1 − ...− b1x− b0). Therefore U(n) is an affine

space with coordinates a0, ..., an−1, b0, ..., bn−1 ∈ C.

Definition 1.23. Fix a partition µ and an ideal I ∈ Uµ ⊂ Hilbn(C2), and for some monomial

xrys such that (r, s) sits outside of the partition µ, the monomial xrys modulo the ideal I

can be uniquely written as a linear combination in the basis Bµ. Denote the coefficients in

C of this linear combination Crs
hk by the indexes r, s, h, k.

xrys =
∑

(h,k)∈µ

Crs
hk xhyk mod I.

Remark 1.24. The coefficients Crs
hk depend on the ideal I, and one can check that they

determine I completely.
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We will consider Crs
hk as algebraic functions on the open chart Uµ.

Theorem 1.25. [5] For all the partitions µ of n, the sets Uµ are open affine subvarieties

of Hilbn(C2) that cover Hilbn(C2). The affine coordindate ring OUµ of Uµ is generated by

the variables Crs
hk for (h, k) ∈ µ and all (r, s). The ring OUµ has extra polynomial relations

among variables Crs
hk.

Example 1.26. For the partitions (3), (1, 1, 1), (2, 1) of n = 3, we have the following three

charts U(3), U(1,1,1) and U(2,1). The 6 coordinates on U(3), U(1,1,1) are as follows.

OU(3)
= C[C30

00 , C
30
10 , C

30
20 , C

01
00 , C

01
10 , C

01
20 ], such that the monomials x3 = C30

00 · 1 + C30
10 · x +

C30
20 · x2 mod I, and y = C01

00 · 1 + C01
10 · x+ C01

20 ·+x2 mod I.

OU(1,1,1)
= C[C03

00 , C
03
01 , C

03
02 , C

10
00 , C

10
01 , C

10
02 ], such that the monomials x = C10

00 · 1 + C10
01 · y +

C10
02 · y2, and that y3 = C03

00 · 1 + C03
01 · y + C03

02 · y2.

There are 9 coordinates on U(2,1) with 3 equations relating them as follows. For simplicity,

we omit the notation of Crs
hk and give them another name:

x2 = a · 1+ b ·x+ c · y mod I, xy = d · 1+ e ·x+ f · y mod I, y2 = g · 1+h ·x+ k · y mod I.

We can compute the relations among a, ..., k modulo I as follows.

Modulo I: x2y = a ·y+ b ·xy+ c ·y2 = a ·y+ b · (d ·1+ e ·x+f ·y)+ c · (g ·1+h ·x+k ·y) =

(bd+ cg) + (ch+ be)x+ (a+ bf + ck)y.

x2y = d · x + e · x2 + f · xy = d · x + e · (a · 1 + b · x + c · y) + f · (d · 1 + e · x + f · y) =

(ae+ df) + (d+ be+ ef)x+ (f 2 + ce)y.
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xy2 = d · y + e · xy + f · y2 = d · y + e · (d · 1 + e · x + f · y) + f · (g · 1 + h · x + k · y) =

(de+ fg) + (e2 + fh)x+ (d+ ef + fk)y.

xy2 = g · x + h · x2 + k · xy = g · x + h · (a · 1 + b · x + c · y) + k · (d · 1 + e · x + f · y) =

(ah+ dk) + (g + bh+ ek)x+ (ch+ kf)y.

By comparing the coefficients at each basis element 1, x, y, we obtain 3 independent rela-

tions:

a + bf + ck = f 2 + ce. d + ef = ch. g + bh + ek = e2 + fh. One can check that the rest

of the relations follow from these 3.

Therefore, the chart U(2,1) is 6 dimensional with 6 independent coordinates b, c, e, f, h, k,

and the coordinates a, d, g can be written as degree 2 polynomials in b, c, e, f, h, k.

1.4. Torus action on the Hilbert scheme. The 2-dimensional torus T 2 = {(a, b)|a, b ∈

C∗} acts on the affine plane C2 with coordinates (x, y) by (a, b) · (x, y) = (ax, by). This

induces an action on any polynomial f(x, y) in the polynomial ring C[x, y] by (a, b)·f(x, y) =

f(a−1x, b−1y). Therefore, we have a well-defined torus action on the Hilbert scheme of points

by sending an ideal to another ideal in Hilbn(C2).

Remark 1.27. The fixed points in Hilbn(C2) under this torus action are all the monomial

ideals Iµ, where µ is a partition of n.

2. Hilbert scheme of points on a non-reduced curve

We now define the Hilbert scheme of points on a non-reduced curve.
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Let C denote a plane curve defined by a polynomial equation f(x, y) = 0 of two vari-

ables x, y. The polynomial f(x, y) could be factored into several irreducible factors fj with

multiplicities kj, i.e. f(x, y) = Πj(fj(x, y))
kj . In other words, we consider all plane curves

that could potentially be reducible (having several components) and non-reduced (having

multiplicities ≥ 1) in this paper.

Definition 2.1. The Hilbert scheme of n points on the curve C, denoted by C [n], is the

moduli space of ideals I in the polynomial ring of two variables C[x, y] satisfying the condition

that the quotient ring C[x, y]/I has dimension n as a vector space over C, and also that the

polynomial f(x, y) defining the curve C has to be contained in the ideal I as an element.

Remark 2.2. Note that the only difference between definitions of the Hilbert scheme of

points on the plane and a curve is that we require the containment of the polynomial f(x, y) ∈

I. Note that equivalently we can define C [n] as the moduli space of ideals I in OC =

C[x, y]/(f(x, y)) such that the quotient ring OC

I
has dimension n.

The Hilbert scheme of points on a curve C, Hilbn(C) is a subscheme of Hilbn(C2) cut out

by some equations in local charts Uµ which we write explicitly in the proof of Lemma 6.2.

Example 2.3. The ideal (x2, y) is in Hilb2(C2) but not in Hilb2(C) when the curve C is

{x = 0}, the y-axis, because the polynomial x is not contained in the ideal (x2, y).

Example 2.4. When n = 0, the Hilbert scheme of 0 points (C2)[0] is a point, because the

only ideal I of C[x, y] where C[x, y]/I has dimension 0 is the entire ring C[x, y]. The Hilbert
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scheme of 0 points on the curve C, C [0], is also the entire ring C[x, y], because any polynomial

f(x, y) defining the curve C is contained in C[x, y].

Definition 2.5. Define Cred as the reduced subscheme of C2 corresponding to C. It is the

set of points in C2 satisfying the equation f(x, y) = 0, or equivalently given by equation∏
fi = 0.

Example 2.6. The Hilbert scheme of 1 point on a curve C is the the curve C itself as a

scheme.

More generically, we have the following lemma.

Lemma 2.7. If I is the ideal in Hilbn(C) and p is a point(maximal ideal) in Spec(C[x, y]/I)

then p ∈ Cred.

Proof. For a point p in Spec(C[x, y]/I) such that f(x, y) ∈ I, we have that p must satisfy

f(p) = 0 and be in the vanishing locus of f(x, y), which implies that p ∈ Cred. □

Definition 2.8. For a possibly non-reduced plane curve C, we restrict the the Hilbert-Chow

map to C [n], which is a subset of (C2)[n], and the Hilbert-Chow map π sends an ideal I in

C [n] to π(I) = m1 · p1 + ... + ms · ps, where p1, ..., ps are points on the underlying reduced

curve Cred of C.
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Definition 2.9. Pick a point z on the curve C. The punctual Hilbert scheme of points on

the curve C, denoted by C
[n]
z , is the subscheme of C [n] where each ideal I satisfy π(I) = n ·z,

where π denotes the Hilbert-Chow map.

Theorem 2.10. [8] If the curve C is smooth (and reduced) then Hilbn(C) = Symn(C) and

smooth of dimension n.

Theorem 2.11. [1][2] If the curve C is reduced and irreducible then Hilbn(C) is irreducible.

Theorem 2.12. [7] If the curve C is reduced and reducible, the components of Hilbn(C) are

indexed by a composition µ of n.

The parts of the permutation indicate the number of reduced points on each smooth subset

of the curve component, and the components are given by the closure of the products of smooth

part of the the curve components, such that the multiplicities of each curve component in the

product is the corresponding part of the permutation.

In this thesis, we generalize this Theorem 2.12 to the case of non-reduced curves.

We now introduce the stratification we use throughout the paper.

Definition 2.13. We stratify Hilbn(C) by the multiplicities of points in the image of the

Hilbert-Chow map π. Let m1
1, . . . ,m

j
i , . . . ,m

j
tj be a partition of n. Define each stratum

Σm1
1,...,m

j
tj

as the preimage under the Hilbert-Chow map of {m1
1x

1
1 + . . .mj

tjx
j
tj}, the collec-

tions of all possible configuration of s points on the smooth part of the curve Cred with

multiplicities m1
1, . . . ,m

j
tj .
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Define the stratumM as the set of ideals I ∈ Hilbn(C) such that π(I) contains singularities

of C.

Remark 2.14. In the study of the easier problem of the irreducible components of Hilbn({yβ =

0}), we simplify our notation and denote the multiplicity of points on the reduced smooth

line {y = 0} as m1, . . . ,ms . The strata are therefore denoted as Σm1,...,ms . The stratum M

is empty.

The strata defined above are not to be confused with the following Definition 2.15, which

will also be useful in the later section. The distinction is that for any ideal in Σm1,...,ms , we

allow the location of the collection of points to vary as long as the multiplicities of the points

are unchanged, but all the images of ideals in Σm1,...,ms(x1, . . . , xs) must have exactly the

same locations and multiplicities m1(x1, 0) + . . .ms(xs, 0) under the Hilbert-Chow map. We

also have the following Lemma 2.16 computing the dimension of Σm1,...,ms(x1, . . . , xs).

Definition 2.15. Fix s distinct points (x1, 0), . . . , (xs, 0) on the line {yβ = 0} with multiplici-

tiesm1, . . . ,ms. We denote their preimage under the Hilbert-Chow map to be Σm1,...,ms(x1, . . . , xs).

Lemma 2.16. The set Σm1,...,ms(x1, . . . , xs) is an irreducible variety, isomorphic to Hilbm1(C2, 0)×

· · · × Hilbms(C2, 0), and has dimension n− s.

Proof. The preimage of each point mi(xi, 0) under the Hilbert-Chow map is isomorphic to

Hilbmi(C2, 0). The ideals that vanish at all of the points m1(x1, 0) + · · ·+ms(xs, 0) must be
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in one-to-one correspondence with ideals in the product Hilbm1(C2, 0)× · · · ×Hilbms(C2, 0).

And each punctual Hilbert scheme Hilbmi(C2, 0) is irreducible and has dimension mi − 1

(Theorem 1.14), so their product is also irreducible, and has dimension (m1 − 1) + (m2 −

1) + · · ·+ (ms − 1) = m1 +m2 + · · ·+ms − s = n− s.

□

3. Nested Hilbert scheme of points

In this section, we define the nested Hilbert schemes of points on an affine plane and a

plane curve, and state some known results about their properties.

3.1. Nested Hilbert schemes on the plane.

Definition 3.1. The nested Hilbert scheme of points on the plane C2, denoted by Hilbn,n+i(C2),

is the moduli space of pairs of ideals (I, J) inside the product space (C2)[n+i]× (C2)[n], satis-

fying the dimension conditions dim(C[x, y]/I) = n+ i, dim(C[x, y]/J) = n, and that I ⊂ J .

Due to work of Cheah, we have the following classification of the smoothness of the nested

Hilbert scheme of points.

Theorem 3.2. The nested Hilbert scheme of points on C2, denoted by Hilbn,n+i(C2), is

smooth when i = 1, and is singular when i ≥ 2.

The nested punctual Hilbert scheme of points on the plane is an interesting subscheme

whose components and smoothness have been studied.
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Definition 3.3. The nested punctual Hilbert scheme of points on the plane C2, denoted by

(C2)
[n,n+i]
0 , is the moduli space of pairs of ideals (I, J) in the product of punctual Hilbert

schemes on the plane (C2)
[n+i]
0 × (C2)

[n]
0 that satisfies I ⊂ J .

Theorem 3.4. [9] When i = 1, the nested punctual Hilbert scheme of points on the plane

(C2)
[n,n+1]
0 is irreducible of dimension n.

When i = 2, the nested punctual Hilbert scheme of points on the plane (C2)
[n,n+2]
0 is

equidimensional, and has ⌊n+2
2
⌋ components of dimension n+ 1.

When i ≥ 3, the nested punctual Hilbert scheme of points on the plane is reducible.

Remark 3.5. When i ≥ 3, the components of the nested punctual Hilbert scheme of points

on the plane is not known in general. In [9], the authors found the existence of two distinct

components, therefore proving that (C2)
[n,n+i]
0 is reducible when i ≥ 3.

3.2. Nested Hilbert schemes on a curve.

Definition 3.6. The nested Hilbert scheme of points on the curve C, denoted by C [n,n+i],

is the moduli space of pairs of ideals (I, J) inside the product space C [n+i] ×C [n], satisfying

the dimension conditions dim(C[x, y]/I) = n+ i, dim(C[x, y]/J) = n, and f(x, y) ∈ I ⊂ J .

Remark 3.7. The nested Hilbert scheme of 0 and 1 points (C2)[0,1] is isomorphic to the

Hilbert scheme of 1 point on the plane (C2)[1], given by the collection of all ideals J of

colength 1 in C[x, y].
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The nested Hilbert scheme of 0 and 1 points C [0,1] is isomorphic to the Hilbert scheme of

1 point on the curve C [1], given by the collection of all ideals J of colength 1 in the quotient

ring C[x, y]/(f(x, y)).

Definition 3.8. Pick a point z on the curve C. The nested punctual Hilbert scheme of

points on the curve C, denoted by C
[n,n+i]
z is the moduli space of pairs of ideals (I, J) in the

product of punctual Hilbert schemes on the curve C
[n+i]
z × C

[n]
z that satisfies I ⊂ J .

Now we define a subscheme of the nested Hilbert scheme that will be used in later chapters.

Definition 3.9. We define a subscheme C [n,n+i][z] of the nested Hilbert scheme C [n,n+i] by

requiring that each pair of ideals (I, J) satisfies π(J/I) = i · [z], where π denotes the Hilbert-

Chow map, and [z] denotes the class of a point z on underlying reduced curve Cred. Call

this subscheme the special nested Hilbert scheme at point z.

4. Matrix representation of the Hilbert scheme of points

The Hilbert scheme of points Hilbn(C2) has the following equivalent definition in repre-

sentation theory.

Theorem 4.1. [8] The Hilbert scheme of points Hilbn(C2) is isomorphic to the following

space

{(X ,Y , i)}/GLn(C)
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such that (1) the entries X ,Y are n by n matrices in End(Cn), and that the commutator

[X ,Y ] = 0, and that (2) the entry i is a vector in Cn whose orbit under the action of X ,Y

is the entire space Cn. The elements g in GLn(C) act on the tuple (X ,Y , i) by g · (X ,Y , i) =

(gX g−1, gYg−1, gi), changing basis for the matrices X ,Y.

Proof. For an given ideal I ∈ Hilbn(C2), we want to construct a tuple (X ,Y , i), and vise

versa.

Given an ideal I, consider C[x, y]/I to be isomorphic to (C)n as a vector space. Let X

and Y be the endomorphism that correspond to multiplication by the variables x and y on

the vector space C[x, y]/I, and let i be the element 1 ∈ C[x, y]/I. The condition [X ,Y ] = 0

is true by construction that multiplication by the variables x and y is commutative. The

orbit of the vector i also generate the entire C[x, y]/I because the any monomial in the ring

C[x, y] can be generated by x and y multiplying with the element 1.

Given a tuple (X ,Y , i), we construct the ideal I as I = {f(x, y)|f(X ,Y) · i = 0}, the

collection of polynomials that sends the vector i to 0 when plugging in the matrices X ,Y .

This gives a well-defined ideal.

Now, we show that C[x, y]/I has dimension n as a vector space over C. Let ϕ be the

ring morphism that sends a polynomial f(x, y) to f(X , Y ) · i. The kernel of ϕ is exactly I

by construction, and the image of ϕ is Cn by the stabilizer condition. By the isomorphism

theorem, C[x, y]/I ∼= Cn. □
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Example 4.2. We classify all the tuple (X ,Y , i) in Hilb2(C2), the Hilbert scheme of 2 points

on the plane. Pick the vector i to be i =

1
1

.
Because of the commutator relation [X ,Y ] = 0, both X ,Y can be made upper triangular

simultaneously via conjugation.

Suppose that we denote X =

x1 z

0 x2

 and Y =

y1 w

0 y2

 . Then [X ,Y ] = 0 if and only

if (x1 − x2)w = (y1 − y2)z.

If x1 ̸= x2, then this matrix X has two distinct eiganvalues, and we can diagonalize

X =

x′
1 0

0 x′
2

 and Y =

y′1 0

0 y′2

 . We have two distinct points (x′
1, y

′
1) and (x′

2, y
′
2) on the

plane.

If y1 ̸= y2, we have the same situation. We have two distinct points (x′
1, y

′
1) and (x′

2, y
′
2)

on the plane.

If x1 = x2 and y1 = y2, then X =

x1 z

0 x1

 and Y =

y1 w

0 y1

 . We have one point on

the plane (x1, y1), but the Hilbert scheme of points contains the information of the blowup

P1 = {[z : w]|z, w ∈ C, (z, w) ̸= (0, 0)} at this point (x1, y1).

Remark 4.3. The punctual Hilbert schemes on the plane, Hilbn(C2, 0) are given by pairs of

matrices (X ,Y) such that X ,Y are both nilpotent. The vector i is given in the same way as

the Hilbert scheme of points Hilbn(C2) in the proof of Theorem 4.1 above. As an example,

Hilb2(C2, 0) = P1 correspond to the blowup at the point (x1, y1) in Example 4.2 above.
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Remark 4.4. Given a pair of ideals (I, J) in the nested Hilbert scheme of points on C2,

denoted by Hilbn,n+i(C2) such that I ⊂ J ⊂ C[x, y], they correspond to block triangular

matrices of size n+ i by n+ i. i.e. they look like

T1 M

0 T2

 such that T1 and T2 are square

blocks, and T1 has size n by n, and T2 has size i by i. The block M can take any values.

To see this, we look at two operators X ,Y on the n+ i dimensional vector space Cn+i ∼=

C[x, y]/I, such that both X and Y preserve the vector subspace C[x, y]/J of dimension n

inside C[x, y]/I. These matrices are exactly block triangular matrices as above.

Chapter 3: Irreducible components of the Hilbert

scheme of points on non-reduced curves

5. Main Theorems

In this section, we list a few theorems and prove them later.

We first define the notation we use.

Definition 5.1. Define the tuple with j parts separated by bars, which looks like the fol-

lowing: m1
1, ...,m

a1
1 |m1

2, ...,m
a2
2 |...|m1

j , ...,m
aj
j .

The numbers mi
j can be any positive integer, or 0. The numbers a1, ..., aj are the number

of tuples within each bar, which are required to be finite. In the case that mi
j = 0 for all

i = 1, ..., ai, we just write one 0 between the bars, i.e. |0|. In the case that mi
j = 0 but
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mi′
j ̸= 0 for some i′, we omit writing mi

j and only write the non-zero numbers between the

bars.

This tuple satisfies the following combinatorial rules.

1. The tuple m1
1 + ...+ma1

1 +m1
2 + ...+ma2

2 + ...+m1
j + ...+m

aj
j = n sums up to n.

2. The numbers within each bar are unordered (swapping the numbers in each bar still

indexes the same component), but the bars are ordered (swapping two different bars gives

another component).

3. Each number mi
j satisifies m

i
j ≤ βj

Theorem 5.2. [10] Let C denote a plane curve with components Cj, where each Cj has

multiplicity βj. The irreducible components of C [n] are indexed by the tuple of numbers with

j parts separated by bars as defined above, i.e. m1
1, ...,m

a1
1 |m1

2, ...,m
a2
2 |...|m1

j , ...,m
aj
j .

Theorem 5.3. [10]

Stratify the Hilbert scheme C [n] using the Hilbert-Chow map as follows. Consider a collec-

tion of points S on the curve C. For all the points that sit on the curve component Cj, index

them as p1j , ..., p
i
j, ..., p

aj
j , where aj is the total number of points on the component Cj. Let

the numbers mj
j be the multiplicity of the i-th point on the curve Cj. Fix such multiplicities

of the points but allow the location of the points to move along the curve.

Define the strata as K
m1

1,...,m
a1
1 |m1

2,...,m
a2
2 |...|m1

j ,...,m
aj
j

:= π−1(m1
1 · p11 + ...+ma1

1 · pa11 +m1
2 · p12 +

...+ma2
2 · pa22 + ...+m1

j · p1j , ...,m
aj
j · pajj ), where π is the Hilbert-Chow map.
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In other words, define the stratum, which is indexed by such fixed multiplicities, to be the

collection of ideals I whose image under the Hilbert-Chow map π(I) are exactly this collection

of points S with the desired multiplicities mi
j.

The irreducible components Σ
m1

1,...,m
a1
1 |m1

2,...,m
a2
2 |...|m1

j ,...,m
aj
j

:= π−1(m1
1 · p11 + ...+ma1

1 · pa11 +

m1
2 · p12 + ... + ma2

2 · pa22 + ... + m1
j · p1j , ...,m

aj
j · pajj ) of C [n] are the closure of the strata

K
m1

1,...,m
a1
1 |m1

2,...,m
a2
2 |...|m1

j ,...,m
aj
j

satisfying that mi
j ≤ βj.

Theorem 5.4. [10] All the irreducible components of C [n] have dimension n.

To make the notations easier to understand, we give an example as an application of the

theorems above.

Example 5.5. We classify all the 9 components of the Hilbert scheme of 4 points on the

curve y2(y − x2) = 0 and compute their multiplicities.
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6. Easier problem: studying the components of Hilbn({yβ = 0}).

6.1. Charts and the lower bound.

We first define and state a theorem about the affine charts of Hilbn(C2) following Haiman’s

paper [5].

Theorem 6.1. [5] The collection of all Uµ, where µ is a partition of n, forms an open cover

of Hilbn(C2). Each chart Uµ is open, irreducible, smooth, and affine of dimension 2n.
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Now, we put a lower bound on the dimension of the irreducible components of Hilbn(C).

Lemma 6.2. The irreducible components of Hilbn(C) have dimension at least n.

Proof. Fix a chart Uµ which has non-empty intersection with Hilbn(C). Let f denote the

defining polynomial of curve C. Because f ∈ I, we can write f as a linear combination of

the monomial basis Bµ mod I, and the coefficients in this linear combination should all be 0.

There are n basis elements in Bµ, so there are n conditions imposed on the 2n coordinates

of Uµ, making the dimension of the irreducible components of Hilbn(C)∩Uµ at least n. And

the irreducible components of Hilbn(C) should have the same dimension as the irreducible

components of Hilbn(C)∩Uµ, because intersecting an irreducible component with an open set

Uµ does not change its dimension. So each irreducible component of Hilbn(C) has dimension

at least n. □

6.2. The special affine chart where everything happens: U(n).

From now on through the end of this section, we focus on studying the easier problem,

the irreducible components of Hilbn({yβ = 0}).
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The only chart relevant to our computation is U(n), the chart indexed by the partition (n).

In the notation of the Young diagram, this partition corresponds to a row of n boxes, and

the corresponding B(n) = {1, x, x2, . . . , xn−1}.

1 x x2 . . . xn−1

Now, we reveal to the reader why we only need this one specific chart U(n). It is given as

the corollary of the following Lemma.

Lemma 6.3. (a) The space Σm1,...,ms(x1, . . . , xs)−U(n) has dimension strictly less than n−s.

(b)The complement of U(n) in each stratum Σm1,...,ms has dimension strictly less than n.

Equivalently, dim(Σm1,...,ms − U(n)) < n.

Proof. (a) The chart U(n) is open in each Σm1,...,ms(x1, . . . , xs). The intersection U(n) ∩

Σm1,...,ms(x1, . . . , xs) is nonempty because the ideal I = ((x − x1)
m1 · · · · · (x − xs)

ms , y)

is in the intersection. Therefore, Σm1,...,ms(x1, . . . , xs) − U(n) is a closed and proper sub-

set of Σm1,...,ms(x1, . . . , xs), and Σm1,...,ms(x1, . . . , xs) is irreducible by Lemma 2.16. So

Σm1,...,ms(x1, . . . , xs)− U(n) has dimension strictly less than n− s.

(b) Varying each xi adds 1 degree of freedom, and varying all the x1, . . . , xs adds s degrees

of freedom in total. By part (a), Σm1,...,ms(x1, . . . , xs)−U(n) has dimension strictly less than

n− s, and therefore Σm1,...,ms − U(n) has dimension strictly less than n− s+ s = n. □

Corollary 6.4. All irreducible components of Hilbn({yβ = 0}) intersect the chart U(n).
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Proof. We want to show that Hilbn({yβ = 0})− U(n) does not fully contain any irreducible

components of Hilbn({yβ = 0}).

Suppose for contradiction that Hilbn({yβ = 0})−U(n) contains some irreducible component

A of Hilbn({yβ = 0}), then the dimension of Hilbn({yβ = 0}) − U(n) must be greater than

or equal to n by Lemma 6.2.

Now we consider the union of complements of U(n) in every stratum U := ∪m1,...,ms(Σm1,...,ms−

U(n)). Because the dimension of each Σm1,...,ms − U(n) is strictly less than n by Lemma 6.3,

the union U also has dimension strictly less than n. But Hilbn({yβ = 0})−U(n) is contained

in U , so we have a contradiction.

□

Now we describe the coordinate system on U(n). This also follows from the discussion in

Haiman’s paper [5].

Write xn and y as a linear combination of the basis B(n) = {1, x, x2, . . ., xn−1} of C[x, y]/I,

and denote the coefficients as follows:

xn = a0 + a1x+ ...+ an−1x
n−1 mod I

y = b0 + b1x+ ...+ bn−1x
n−1 mod I.
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Define polynomials a(x) = xn−an−1x
n−1−...−a1x−a0 and b(x) = bn−1x

n−1+...+b1x+b0,

then any ideal I in U(n) is generated as I = (a(x), y− b(x)). Throughout this paper, we will

use a(x) and b(x) to denote the polynomials defined above. As a remark, a(x) has degree

exactly n, but b(x) can have any degree less than or equal to n− 1.

6.3. Stratification inside U(n) and classifying the ideals in each stratum.

The stratification Σm1,...,ms of Hilbn({yβ = 0}) induces a stratification

Cm1,...,ms := Σm1,...,ms ∩ U(n)

on Hilbn({yβ = 0})∩U(n). And we know from Corollary 6.4 that all irreducible components

of Hilbn({yβ = 0}) intersect U(n). Later in Lemma 6.11 we prove that the strata Cm1,...,ms are

irreducible. And as we show in this section, because of the nice coordinate system on U(n),

we are able to write out specifically the ideals in each stratum of Cm1,...,ms as in Proposition

6.9.

Proposition 6.5. The condition that yβ is contained in I = (a(x), y − b(x)) ∈ U(n) is

equivalent to the condition that the polynomial a(x) divides bβ(x).
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To prove one direction of the proposition that yβ ∈ I implies a(x)|bβ(x), we first prove

the following lemma:

Lemma 6.6. Let f(x) be a polynomial in I = (a(x), y− b(x)) which does not depend on the

variable y. Then f(x) is divisible by a(x).

Proof. Perform polynomial long division of f(x) by a(x) and we get that f(x) = a(x) ·

q(x) + r(x) for some polynomial r(x) and q(x). Suppose for the purpose of contradiction

that r(x) is not 0, and denote the degree of r(x) by r, r < n. We can explicitly write out

r(x) = l0 + l1x+ · · ·+ lrx
r for some li ∈ C and lr ̸= 0.

Because both f(x) and a(x) are in I, we have that r(x) = f(x)− a(x) · q(x) must also be

in I, so r(x) = 0 mod I, and therefore r(x) is a nonzero linear combination of 1, x, . . . , xr.

But we also know that Bµ = {1, x, x2, . . . , xn−1} is a basis of C[x, y]/I, contradiction. So

r(x) must be 0 and a(x) divides f(x). □

Now, we are ready to prove Proposition 6.5.

Proof of Proposition 6.5. Assume yβ ∈ I. Because y− b(x) is a generator of I, y = b(x) mod

I, which implies that b(x)β ∈ I and by Lemma 6.6, bβ(x) is divisible by a(x).

Suppose a(x)|bβ(x), then because a(x) ∈ I, we have bβ(x) ∈ I. Again because y = b(x)

mod I, and bβ(x) ∈ I, we must have yβ ∈ I.

□
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We factor a(x) and b(x) into linear factors in terms of its roots, and study the possible

multiplicities of roots that a(x) and b(x) can have.

Lemma 6.7. Let x1 . . . xs denote the distinct roots of a(x), and mi the multiplicity of each

root xi, then we can explicitly make the factorization:

a(x) = (x− x1)
m1 · (x− x2)

m2 · . . . · (x− xs)
ms where

∑
i

mi = n.

Then condition a(x)|bβ(x) splits into 2 cases depending on the multiplicities mi.

(1) General case: If
⌈
m1

β

⌉
+ · · ·+

⌈
ms

β

⌉
≤ n− 1,

then a(x)|bβ(x) if and only if

b(x) = (x− x1)
⌈m1

β ⌉ · (x− x2)
⌈m2

β ⌉ · . . . · (x− xs)
⌈ms

β ⌉ · α(x)

for some polynomial α(x) of degree at most t = n− 1−
∑⌈

mi

β

⌉
(∗∗).

(2) Special case: If
⌈
m1

β

⌉
+ · · ·+

⌈
ms

β

⌉
> n− 1,

then a(x)|bβ(x) if and only if b(x) = 0.

Proof. Denote the multiplicity of (x− xi) in b(x) by qi.

Because a(x) divides bβ(x), each factor (x − xi) in bβ(x) must have multiplicity higher

than mi, or b(x) has to be 0. That is to say, the multiplicity qi must satisfy β · qi ≥ mi.
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Because qi are integers, the smallest possible value of qi is
⌈
mi

β

⌉
. So b(x) must have the

factor (x− x1)
⌈m1

β ⌉ · (x− x2)
⌈m2

β ⌉ . . . · (x− xs)
⌈ms

β ⌉, or is equal to 0.

Recall that b(x) is constructed to have degree at most n−1, so if
⌈
m1

β

⌉
+· · ·+

⌈
ms

β

⌉
≤ n−1,

then α(x) is some polynomial of degree at most n − 1 − (
⌈
m1

β

⌉
+ · · · +

⌈
ms

β

⌉
). The special

case happens when
⌈
m1

β

⌉
+ · · ·+

⌈
ms

β

⌉
> n− 1, then b(x) has to be 0.

□

Remark 6.8. The special case
⌈
m1

β

⌉
+ · · ·+

⌈
ms

β

⌉
> n− 1 happens exactly when either (a)

β ≥ 2, all mi = 1 and s = n, or (b) β = 1 and mi can be any positive integers.

Proof. Recall that we assumed mi ≥ 1. (a) When β ≥ 2, we have 1 ≤
⌈
mi

β

⌉
≤ ⌈mi⌉ = mi.

We also have
∑s

i=1mi = n as the total degree of a(x). So
⌈
m1

β

⌉
+ · · · +

⌈
ms

β

⌉
≤ n, and⌈

m1

β

⌉
+ · · · +

⌈
ms

β

⌉
= n only if

⌈
mi

β

⌉
= mi. Finding the possible values of mi so that⌈

mi

β

⌉
= mi is equivalent to finding mi such that mi

β
≤ mi <

mi

β
+ 1. For any β ≥ 2, mi

β
≤ mi

is always true, and mi <
mi

β
+ 1 is equivalent to mi <

β
β−1

.

Observe that 1 < β
β−1

≤ 2 for all β ≥ 2, so the only possible value that mi can take is 1.

(b) When β = 1,
⌈
m1

β

⌉
+ · · · +

⌈
ms

β

⌉
= ⌈m1⌉ + · · · + ⌈ms⌉ = m1 + · · · + ms = n. So⌈

m1

β

⌉
+ · · ·+

⌈
ms

β

⌉
≥ n− 1 is always satisfied for arbitrary mi. □

Now, we conclude our results from above and explicitly write out the ideals in each stratum

Cm1,...,ms .
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Proposition 6.9. Each stratum Cm1,...,ms contains exactly the ideals I of the form I =

(a(x), y−b(x)), where a(x) = (x−x1)
m1 · (x−x2)

m2 . . .· (x−xs)
ms, and b(x) = (x−x1)

⌈m1
β ⌉ ·

(x−x2)
⌈m2

β ⌉ . . . · (x−xs)
⌈ms

β ⌉ ·α(x) when
⌈
m1

β

⌉
+ · · ·+

⌈
ms

β

⌉
≤ n−1 (general case); b(x) = 0

when
⌈
m1

β

⌉
+ · · ·+

⌈
ms

β

⌉
> n− 1 (special case).

Proof. The ideals I in each stratum Σm1,...,ms ∩ U(n) have the form (a(x), y − b(x)), where

a(x) = (x−x1)
m1 . . . (x−xs)

ms . By Proposition 6.5, finding the ideals I in the intersection of

Hilbn({yβ = 0}) with U(n) is equivalent to imposing the condition that b(x)|aβ(x) for ideals

I = (a(x), y − b(x)) ∈ U(n). By Lemma 6.7, b(x)|aβ(x) is equivalent to the condition that

b(x) = (x − x1)
⌈m1

β ⌉ · (x − x2)
⌈m2

β ⌉ · . . . · (x − xs)
⌈ms

β ⌉ · α(x) or b(x) = 0, depending on the

multiplicities mi. □

6.4. Counting dimension and finding irreducible components.

For each stratum Cm1,...,ms , we compute its dimension by counting the degrees of freedom

given by polynomials a(x), b(x), and α(x).

Lemma 6.10. If
⌈
m1

β

⌉
+ · · ·+

⌈
ms

β

⌉
≤ n− 1, then dim(Cm1,...,ms) = t+ s+1, where t is the

maximum degree that α(x) can have as in (∗∗).
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For β ≥ 2, there is exactly one stratum C1,...,1 satisfying special condition for Lemma 6.7

(2), and this stratum C1,...,1 has dimension n. For β = 1, all strata Cm1,...,ms have dimension

s.

Proof. Let’s first look at the general case:
⌈
m1

β

⌉
+ · · ·+

⌈
ms

β

⌉
≤ n− 1.

Each distinct root xi of a(x) gives a degree of freedom, so a(x) has s degrees of freedom.

Denote the maximum degree of α(x) by t, then we can explicitly write out α(x) as α(x) =

α0 + . . .+ αtx
t for coefficients αi ∈ C, and each αi gives a degree of freedom. So α(x) gives

t + 1 degrees of freedom. Note that b(x) is completely determined by a(x) and α(x) so it

does not contribute to any degree of freedom. The dimension of stratum Cm1,...,ms therefore

is t+ 1 + s.

Special case:
⌈
m1

β

⌉
+ · · ·+

⌈
ms

β

⌉
> n−1. As discussed in Lemma 6.8, in the case of β ≥ 2,

we need to have s = n and all the mi = 1, which gives us the stratum Cm1=1,...,mn=1.

Recall from Proposition 6.9 that in the special case, b(x) = 0, so only a(x) contributes to

degrees of freedom, which are given by the n variables x1, . . . , xn. Therefore the dimension

of C1,...,1 is n.

We can also have β = 1. In this case, no matter which stratum we look at, the ideals

I = (a(x), y−b(x)) in it must satisfy b(x) = 0 by Proposition 6.9. All the degrees of freedom

are given by a(x), so the dimension of Cm1,...,ms is s. □
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Lemma 6.11. All the strata Cm1,...,ms are irreducible.

Proof. By Proposition 6.9 and Lemma 6.10, a stratum Cm1,...,ms is isomorphic to

(Ct+s+1 − {(x1, . . . , xs, α0, . . . , αt)|xi = xj for some 1 ≤ i, j ≤ s})/Stab({m1, . . . ,ms}). We

remove the set of all ideals where some xi = xj because the roots should be distinct by

construction. We mod out by the action of the stabilizer of the multiplicities to eliminate

the over-counting of swapping xi and xj when mi = mj. An affine space with a closed

subvariety removed is irreducible, and the quotient by action of a finite group again keeps

the space irreducible. □

Now we can conclude that all the closures Cm1,...,ms are irreducible.

We conclude all the previous results and classify all the irreducible components of Hilbn({yβ =

0}) as the following theorem.

Theorem 6.12. All the irreducible components of Hilbn({yβ = 0}) have dimension n and

are closures of the strata Cm1,...,ms where 1 ≤ mi ≤ β for all i. Given m1, . . . ,ms ≤ β,

the generic point of this component Cm1,...,ms consists of s distinct points on {y = 0} with

multiplicities m1, . . . ,ms.

Proof. We remind the reader that in our previous Lemma 6.2, we show that the dimensions of

the irreducible components are at least n. Now we need to find the strata whose dimensions

are n or more, and their closures are candidates of the irreducible components.
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We first discuss the special case.

When β = 1, a stratum Cm1,...,ms has dimension n only when s = n, so mi must all be 1.

Therefore, Hilbn({y = 0}) has only one irreducible component C1,...,1 of dimension n. This

recovers the previous results of [1] and [2] that Hilbn({y = 0}) is irreducible of dimension n.

When β ≥ 2, the stratum C1,...,1 has dimension n and it is not a subset of the closure of

any other strata. So its closure is an irreducible component of Hilbn({yβ = 0}).

Now we look at the general case and want to find the conditions on t and s such that

dim(Cm1,...,ms) = t + 1 + s ≥ n. Recall that we use t to denote the maximum degree that

α(x) can have, and s the number of distinct roots of a(x).

Here are all the equations relating the dimension of a stratum Cm1,...,ms , t, s and n:

dim(Cm1,...,ms) = t+ 1 + s. (Lemma 6.10)

Because b(x) has degree at most n− 1, we have

t+

⌈
m1

β

⌉
+ . . .+

⌈
ms

β

⌉
= n− 1.

Because mi ≥ 1, we must have
⌈
mi

β

⌉
≥ 1. So

⌈
m1

β

⌉
+

⌈
m2

β

⌉
+ . . .+

⌈
ms

β

⌉
≥ s.
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This implies

dim(Cm1,...,ms) = 1 + s+
(
n− 1−

(⌈m1

β

⌉
+ . . .+

⌈
ms

β

⌉))

(1) = n+ s−
(⌈m1

β

⌉
+ . . .+

⌈
ms

β

⌉)
≤ n. (∗ ∗ ∗)

In particular, this implies that the closure of a stratum Cm1,...,ms of dimension n are exactly

the irreducible components, because there are no other higher dimensional strata.

The equality (∗∗∗) of equation (1) holds when
⌈
m1

β

⌉
+ . . .+

⌈
ms

β

⌉
= s, which is equivalent

to
⌈
mi

β

⌉
= 1, and this happens precisely when 1 ≤ mi ≤ β for all i.

In conclusion, all the strata have dimension ≤ n, and the closure of a stratum Cm1,...,ms is

an irreducible component if and only if 1 ≤ mi ≤ β.

□

7. Generalization: studying components of Hilbn(C)

Now, we generalize our results to Hilbn(C), where C is any non-reduced plane curve.

We remind the reader that we have defined the stratification in Definition 2.13. To briefly

restate the definition, the stratum Σm1
1,...,m

j
i ,...,m

r
sr

is the set of all ideals I such that the of
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multiplicity is exactly mj
i for a point xj

i on the smooth part of underlying reduced curve Cred
j

of Cj.

The stratum M is the collection of all ideals whose images contain some singularities of

C.

Cred
j

xji with multiplicity mj
i

Similar to the approach to the easier problem, we also want to show that the closure

of each stratum Σm1
1,...,m

j
i ,...,m

r
sr

is irreducible. In order to do this, we embed each stratum

Σm1
1,...,m

j
i ,...,m

r
sr

into another irreducible stratum of a bigger space, and show that they have

the same closure.

Definition 7.1. Consider the space Hilbn(C2, Cred,sm), the Hilbert scheme of points on C2

supported on the smooth subset of the reduced curve Cred,sm. We similarly stratify it using

the preimage of the Hilbert-Chow map. Denote each stratum by Lm1
1,...,m

j
i ,...,m

r
sr
. Define

Lm1
1,...,m

j
i ,...,m

r
sr

:= π−1(
∑

i,j m
j
ix

j
i ) where each point xj

i of multiplicity mj
i is on the open

subset Cred,sm
j of the smooth points of the reduced curve Cred

j .
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It’s an easy check that Σm1
1,...,m

j
i ,...,m

r
sr

⊂ Lm1
1,...,m

j
i ,...,m

r
sr

directly from their definitions.

However, the condition of being an ideal in the stratum Σm1
1,...,m

j
i ,...,m

r
sr
, namely containing

the equation f(x, y) of the curve C, is stronger than the condition of being an ideal in the

stratum Lm1
1,...,m

j
i ,...,m

r
sr
, namely vanishing at points on the curve C. So the set containment

Σm1
1,...,m

j
i ,...,m

r
sr

⊂ Lm1
1,...,m

j
i ,...,m

r
sr

is proper.

Now we continue with the irreducibility argument.

Lemma 7.2. Each stratum Lm1
1,...,m

j
i ,...,m

r
sr

is irreducible of dimension n.

Proof. Each stratum Lm1
1,...,m

j
i ,...,m

r
sr

is isomorphic to

( ∏
1≤i≤sj ,1≤j≤r

Hilbm
j
i (C2,0)×

( ∏
j=1...r

(Csm
j )sj−{(x1

1,...,x
r
sr )|x

j
a=xj

b for some 1≤a,b≤sj}
))

/
∏

j=1...r
Stab(mj

1,...,m
j
sj
).

The preimage of a point with multiplicity mj
i under the Hilbert-Chow map is isomor-

phic to Hilbmj
i (C2, 0). Because the points in the image of Lm1

1,...,m
j
i ,...,m

r
sr

can land any-

where on Cred,sm
j , as long as they don’t collide, we multiply by the factor

( ∏
j=1...r

(Csm
j )sj −

{(x1
1, . . . , x

r
sr)|x

j
a = xj

b for some 1 ≤ a, b ≤ sj}
)
. We also need to mod out by the stabilizer

of the multiplicities to account for the over-counting when mj
i = mj

i′ , and xj
i and xj

i′ are

interchanged.

The curve Cred
j is irreducible, and its points of singularities form a closed set, so the

smooth part of the curve Cred,sm
j is irreducible. Removing a closed set from the product of



38 HILBERT SCHEME OF POINTS ON NON-REDUCED CURVES

all Cred,sm
j leaves the product irreducible. By Theorem 1.14, the punctual Hilbert scheme is

irreducible, so the product of all these factors is also irreducible. This irreducible product

taking the quotient by a finite group is again irreducible.

Now, we want to show that Lm1
1,...,m

j
i ,...,m

r
sr
has dimension n. By Theorem 1.14, the product

of the punctual Hilbert schemes has dimension m1
1 − 1+ . . .+mr

sr − 1 = m1
1 + . . .+mr

sr − r.

The product of r planar curves with some closed subsets removed gives r more degrees of

freedom. Quotienting out by the action of a finite group does not change the dimension. So

Lm1
1,...,m

j
i ,...,m

r
sr

has dimension n− r + r = n.

□

Lemma 7.3. When 1 ≤ mj
i ≤ β for all i, j, the closures of the two types of strata are the

same: Σm1
1,...,m

j
i ,...,m

r
sr

= Lm1
1,...,m

j
i ,...,m

r
sr
. Therefore Σm1

1,...,m
j
i ,...,m

r
sr

are irreducible and have

dimension n.

Proof. For the proof we use the following fact: If Y is a closed subset of an irreducible

finite-dimensional topological space X, and if dimY = dimX, then Y = X. Here, we want

Y = Σm1
1,...,m

j
i ,...,m

r
sr

and X = Lm1
1,...,m

j
i ,...,m

r
sr
, and we want to show that they satisfy the

conditions on X and Y .

Assume mj
i ≤ β. We know from Lemma 7.2 that the closures of the strata Lm1

1,...,m
j
i ,...,m

r
sr

are closed, irreducible, and have dimension n.

A collection of points moving along the smooth part of C are locally the same as the

points moving along {yβj = 0}, because the local ring at any point on {yβj = 0} is isomorphic
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to the local ring at any smooth point on {fβj

j (x, y) = 0} by locally changing coordinates

between y and fj(x, y). Therefore the dimension of the stratum Σm1
1,...,m

j
i ,...,m

r
sr

is the sum

of the dimension of each stratum Σmj
1,...,m

j
sj

of Hilbn({yβ = 0}). When 1 ≤ mj
i ≤ βj, the

dimension of each stratum Σmj
1,...,m

j
sj

is mj
1 + . . . +mj

sj
by Theorem 6.12. So the dimension

of the stratum Σm1
1,...,m

j
i ,...,m

r
sr

is m1
1 + · · ·+mj

i + . . .+mr
sr = n.

So the closures of strata Σm1
1,...,m

j
i ,...,m

r
sr

also have dimension n. So the closures of the two

types of strata Y = Σm1
1,...,m

j
i ,...,m

r
sr

and X = Lm1
1,...,m

j
i ,...,m

r
sr

satisfy the conditions of being X

and Y , and therefore they are equal. So Σm1
1,...,m

j
i ,...,m

r
sr

is irreducible of dimension n.

□

Finally, we have the theorem that classifies the irreducible components of Hilbn(C). The

reader might notice that we have not discussed if the stratum M is irreducible or not. As it

turns out in the proof of the following theorem, M is never an irreducible component because

its dimension is too small.

Theorem 7.4. The irreducible components of Hilbn(C) are the closures of the strata Σm1
1,...,m

j
i ,...,m

r
sr

where 1 ≤ mj
i ≤ βj.

Proof. We first remind the reader of Lemma 6.2 that we proved: the irreducible components

all have dimension n or more.

We look at the two types of strata separately. Case 1: The points in the image are all

contained in Csm
j . The strata are Σm1

1,...,m
j
i ,...,m

r
sr
.
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When mj
i > βj, such strata have dimension strictly less than n by Theorem 6.12 and a

similar argument of locally changing coordinates between y and fj(x, y) as in the proof of

Lemma 7.3, and their closures are not the irreducible components. When 1 ≤ mj
i ≤ βj, we

have argued in Lemma 7.3 that such strata are irreducible and have dimension n. So their

closures must be the irreducible components.

Case 2: Some of the points in the image π(I) are singularities or the intersection points

of the curves C. We have one stratum M of such ideals.

The preimage of s points with multiplicities mj
i on Cj is a subset of the product of the

punctual Hilbert scheme Hilbm1
1(C2, 0)×· · ·×Hilbmr

sr (C2, 0). By Theorem 1.14, the product

of the punctual Hilbert schemes has dimension m1
1 − 1+ . . .+mr

sr − 1 = m1
1 + . . .+mr

sr − r.

When we allow the points on the smooth part to move, the points at the singularities or the

intersections do not move. So the dimension added by moving the points are strictly less

than r. So the preimage of a collection of points containing some singularity has dimension

strictly less than n. M is contained in such preimage so has dimension strictly less than n

and cannot be irreducible components by Lemma 6.2.

□

8. computation of multiplicities of components

We intersect each stratum Σµ with U(n) and the intersection is an open dense subset of each

stratum. We study the multiplicities of points in this open dense subset of the intersection.



HILBERT SCHEME OF POINTS ON NON-REDUCED CURVES 41

8.1. The stratum Σ(n) of Hilb
n({yβ = 0}).

We begin by studying the stratum Σ(n) corresponding to the 1-part partition (n) of n.

Because we want the closure of this stratum to be an irreducible component, we assume

n ≤ β in this subsection.

We want to study the stratum Σ(n) inside the chart U(n), so we pick an ideal I ∈ U(n), and

I is necessarily generated as I = (a(x), y − b(x)), where a(x) = xn + an−1x
n−1 + . . . a0 and

b(x) = bn−1x
n−1 + · · ·+ b0. We also want that I ∈ Σn, so a(x) = (x− x1)

n for some x1 ∈ C

and bβ(x) = 0 mod a(x). Those are all the conditions we have to consider to compute the

coordinate ring of Σ(n).

Remark 8.1. We notice that bβ(x) = 0 mod (x− x1)
n is equivalent to bβ(x+ x1) = 0 mod

xn. So we expand the polynomial bβ(x+ x1) and set each polynomial coefficient in variables

b0, . . . , bn−1 of the term xi to be 0 for 0 ≤ i ≤ n− 1.

We define the coefficients of b(x+ x1) first before taking its β-th power.

Definition 8.2. We define the coefficients Bi of b(x+ x1) = b0 + b1(x+ x1) + b2(x+ x1)
2 +

· · ·+ bn−1(x+ x1)
n−1 := B0 +B1x+B2x

2 + · · ·+Bn−1x
n−1.

Each Bi is a polynomial of variables bi, . . . , bn−1 and xi: For 0 ≤ i ≤ n− 1,

Bi := bi +

(
i+ 1

i

)
bi+1x1 +

(
i+ 2

i

)
bi+2x

2
1 + · · ·+

(
n− 1

i

)
bn−1x

n−i−1
1 .
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Now we take the β-th power of b(x+ x1) and find the coefficients of xi in terms of Bi.

Definition 8.3. Define Ei as a function of Bi’s. Set

Ei :=
∑

k0,...,kn−1

(
β

k0, . . . , kn−1

)
Bk0

0 . . . B
kn−1

n−1 ,

where k0, . . . , kn−1 satisfy 0 · k0 + · · ·+ (n− 1) · kn−1 = i and k0 + · · ·+ kn−1 = β.

Lemma 8.4. The function bβ(x+ x1) can be written as bβ(x+ x1) =
∑

i=0,...,n−1

Eix
i.

Proof. By the multinomial theorem,

bβ(x+ x1) = (B0 +B1x+B2x
2 + · · ·+Bn−1x

n−1)β

=
∑

k0+···+kn−1=β

(
β

k0, . . . , kn−1

)
Bk0

0 (B1x)
k1 . . . (Bn−1x

n−1)kn−1

=
∑

k0+···+kn−1=β

(
β

k0, . . . , kn−1

)
(Bk0

0 Bk1
1 . . . B

kn−1

n−1 )x
(0·k0+1·k1+...(n−1)·kn−1).

We denote the power of x as i, and therefore for each term xi, we have i = 0 · k0 +1 · k1 +

. . . (n− 1) · kn−1 and k0 + · · ·+ kn−1 = β. The coefficient of xi is Ei. □

Corollary 8.5. From the computation above, bβ(x + x1) mod xn = 0 if and only if Ei = 0

for 0 ≤ i ≤ n− 1.
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Corollary 8.6. Denote the coordinate ring of the component Σ(n) as R(n), then R(n) is

isomorphic to

R(n) := C[b0, . . . , bn−1, x1]/(E0, . . . , En−1).

We also make the following observations about the functions Ei.

Lemma 8.7. For 0 ≤ i ≤ n − 1, the function Ei is divisible by Bβ−i
0 but not divisible by

Bβ−i+1
0

Proof. Let’s look at a term
(

β
k0,...,kn−1

)
Bk0

0 . . . B
kn−1

n−1 in Ei. In order that k0, . . . , kn−1 satisfy

0 · k0 + · · · + (n − 1) · kn−1 = i and k0 + · · · + kn−1 = β for i ≤ n − 1 < β, we must have

k0 ≥ β − i.

When i = 0, we have E0 = Bβ
0 and therefore E0 is not divisible by Bβ+1

0 .

For every i such that 1 ≤ i ≤ n− 1, the term
(

β
k0,k1

)
Bk0

0 Bk1
1 where k0 + k1 = β and k1 = i

is in Ei. This term is not divisible by Bβ−i+1
0 . Each term of Ei is a positive constant times

a monomial of B0, . . . , Bn−1 and each monomial is different, so if one monomial term is not

divisible by Bβ−i+1
0 , the entire function Ei is not divisible by Bβ−i+1

0 . □

Corollary 8.8. Given n ≤ β, Ei must be divisible by B0. So B0 = 0 implies Ei = 0 for all

i.

Proof. When n ≤ β, we have that i ≤ n− 1 ≤ β − 1. So β − i ≥ 1, and we must have that

Ei is divisible by B0. □
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Definition 8.9. Define Σred
(n) as the reduced variety corresponding to Σ(n).

Lemma 8.10. The reduced variety Σred
(n) is cut out in U(n) by the equations

B0 = b(x1) = b0 + b1x1 + b2x
2
1 + · · ·+ bn−1x

n−1
1 = 0.

and a(x) = (x− x1)
n = 0. In other words,

Σred
(n) := {(b0, . . . , bn−1, x1)|b(x1) = 0, (x− x1)

n = 0}.

Proof. The equation E0 = Bβ
0 = 0 holds true if and only of B0 = 0. Additionally, because

B0 is a factor of all the Ei’s, B0 = 0 implies that all the Ei’s are equal to 0.

□

To compute the multiplicity of the component Σ(n), we localize at a generic point p of V .

Note that p is the prime ideal corresponding to Σred
(n) .

Corollary 8.11. The local ring (R(n))p is isomorphic to

C[b0, . . . , bn−1, x1]p/(B
β
0 , B

β−1
0 , Bβ−2

0 , . . . Bβ−n+1
0 )p,

and it has dimension β − n+ 1.

We conclude that the multiplicity of Σ(n) is β − n+ 1.
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Proof. By Lemma 8.7, we can factor Ei into Ei = Bβ−i
0 Fi where Fi is a factor not divisible

by B0. Therefore, we can rewrite the local ring (R(n))p as

C[b0, . . . , bn−1, x1]p/(B
β
0 , . . . , B

β−i
0 , . . . , Bβ−n+1

0 )p.

Recall that B0 = b0 + b1x1 + b2x
2
1 + · · · + bn−1x

n−1
1 . So the local ring (R(n))p has basis

1, B0, . . . , B
β−n
0 , and the dimension of the local ring (R(n))p is β − n+ 1. □

8.2. The multiplicity of a general stratum Σm1,...,ms.

Now we consider all the strata Σm1,...,ms whose closures are the irreducible components of

Hilbn({yβ = 0}), so
∑

imi = n and ms ≤ β. Recall that every irreducible component inter-

sects U(n) and the intersection is open and dense in Σm1,...,ms , so we study the multiplicities

of the points of each irreducible components in the chart U(n).

The strategy of this section is to show that the coordinate ring of the stratum Σm1,...,ms

in U(n) is isomorphic as a C-vector space to a tensor product of the coordinate rings of the

strata Σ(mi) of Hilb
mi({yβ = 0}), where 1 ≤ i ≤ n, which we computed in the last section.

Therefore the multiplicity of Σm1,...,ms is the product of the multiplicities of Σmi
.

We define the constructions to show this isomorphism.

We first recall our coordinate systems. Denote an ideal in Σm1,...,ms ∩ U(n) as ((x −

x1)
m1 . . . (x− xs)

ms , y − b(x)) for some x1, . . . , xs ∈ C satisfying xi ̸= xj for all 1 ≤ i, j ≤ s.
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Denote an ideal in Σ(mi) ∩ U(mi) ⊂ Hilbmi({yβ = 0}), where (mi) is the one-part partition

of the number mi, as ((x− xi)
mi , y − bi(x)) where bi(x) = bi0 + bi1x + · · · + bimi−1x

mi−1, and

the coordinates are bi0, . . . , b
i
mi−1, xi.

Definition 8.12. (1)Work in U(n) ⊂ Hilbn({yβ = 0}).

Define r(x) := bβ(x) mod a(x), the remainder of polynomial long division.

Denote r(x) := r0 + r1x+ . . . rn−1x.

(2)Work in U(mi) ⊂ Hilbmi({yβ = 0}).

Define ri(x) := (bi(x))β mod (x− xi)
mi .

Denote ri(x) = ri0 + ri1x+ . . . rimi−1x
mi−1.

We remark that b0, . . . , bn−1 and bi0, . . . , b
i
mi−1 are formal variables as generators of co-

ordinate rings of the corresponding strata. But r0, . . . , rn−1 are polynomials of variables

b0, . . . , bn−1, x1, . . . , xs, and ri0, . . . , r
i
mi−1 are polynomials of variables bi0, . . . , b

i
mi−1, xi.

Lemma 8.13. Immediately following the definitions, the coordinate ring Rµ of the scheme

Σm1,...,ms in U(n) of Hilb
n({yβ = 0}) is given by

Rµ = C[b0, . . . , bn−1, x1, . . . , xs]/(r0, . . . , rn−1).
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Recall from the last subsection that the coordinate ring R(mi) of the scheme Σ(mi) in U(mi)

of Hilbmi({yβ = 0}) is given by

R(mi) = C[bi0, . . . , bimi−1, xi]/(r
i
0, . . . , r

i
mi−1).

Let p be a generic point of Rµ, such that xi ̸= xj for all i ̸= j. We localize Rµ at p and

compute the C-dimension of the ring (Rµ)p as the multiplicity of the stratum Σm1,...,ms .

We now state the proposition below, that allows us to compute the dimension of (Rµ)p by

the dimension of (R(mi))p. Recall that the dimension of (R(mi))p is β −mi + 1 as computed

in Corollary 8.11.

Proposition 8.14. The following two local algebras are isomorphic: (Rµ)p ∼=
⊗

i=1,...,s(R(mi))p.

Specifically,

C[x0, . . . , xs, b0, . . . , bn−1]p
(r0, . . . , rn−1)p

∼=
⊗

i=1,...,s

C[xi, b
i
0, . . . , b

i
mi−1]p

(ri0, . . . , r
i
mi−1)p

.

Definition 8.15. We define the ring homomorphism ϕ as follows.

ϕ :
⊗

i=1,...,s

C[xi, b
i
0, . . . , b

i
mi−1]p

(ri0, . . . , r
i
mi−1)p

→ C[x0, . . . , xs, b0, . . . , bn−1]p
(r0, . . . , rn−1)p

.

Define ϕ to be identity on the variables xi, ϕ(xi) = xi. And define ϕ(bij) to be the coefficient

of the term xj in the polynomial long division b(x) mod (x− xi)
mi .
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We define the image of ϕ on the generators, and extend the map ϕ to the entire ring by

declaring that ϕ is a ring isomorphism. i.e. for any element f in the ring
⊗

i=1,...,s(R(mi))p,

define

ϕ(f(x1, . . . , xs, b
1
0, . . . , b

i
j, . . . , b

s
ms−1)) = f(x1, . . . , xs, ϕ(b

1
0), . . . , ϕ(b

i
j), . . . , ϕ(b

s
ms−1)))

Remark 8.16. We can add a variable x and extend ϕ to a ring homomorphism from⊗
i=1,...,s(R(mi))p[x] to (Rµ)p[x] by sending ϕ(x) = x. This homomorphism satisfies that

ϕ(bi(x)) = b(x) mod (x − xi)
mi by construction. Due to the construction that ϕ is a ring

homomorphism, we also have ϕ((bi(x)β) = ϕ((bi(x))β = bβ(x) mod (x− xi)
mi .

Lemma 8.17. We have that ϕ(ri(x)) = r(x) mod (x− xi)
mi.

Proof. Because (x− xi)
mi is a factor of a(x), we have that

ϕ(ri(x)) = ri(x, x1, . . . , xs, ϕ(b
i
j)) = (bi(x, x1, . . . , xs, ϕ(b

i
j)))

β mod (x − xi)
mi = (b(x))β

mod (x− xi)
mi = r(x) mod (x− xi)

mi . □

Proof of Proposition 8.14. We first want to show that the rings
⊗

i=1,...,s

C[xi, b
i
0, . . . , b

i
mi−1]p

and C[x0, . . . , xs, b0, . . . , bn−1]p are isomorphic by proving that ϕ is a linear change of variables

between the ring generators.

We write ϕ as a change-of-basis matrix with polynomial entries of variables xi that changes

basis from the ring generators b10, . . . , b
i
j, . . . , b

s
ms−1 to the ring generators b0, . . . , bn−1. By
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construction, each bij is sent to a linear combination of b0, . . . , bn−1 with polynomial coeffi-

cients of variables xi.

Now we show the other direction that each bj can be written as a linear combination of

bij with coefficients being rational functions in x1, . . . , xs, such that the denominator of each

rational function is a product of xi − xl where i ̸= l.

First, we want to show that the determinant of the matrix ϕ is a product of xi − xl where

i ̸= l. Consider the xi’s not as variables, but fixed numbers in C, and assume all xi ̸= xl for

all i, l ∈ {1, . . . , s}. Similarly, consider b0, . . . , bn−1 not as variables but fixed numbers in C.

So b(x), bi(x), r(x), ri(x), (x − x1)
m1 . . . (x − xs)

ms and (x − xi)
mi are all polynomials with

complex coefficients in one variable x.

We have that C[x]
((x−x1)m1 ...(x−xs)ms )

∼=
⊗

i
C[x]

((x−xi)mi )
by the Chinese remainder theorem. We

can vary the values of b0, . . . , bn−1 such that b(x) gives an arbitrary element of C[x]. By the

Chinese remainder theorem, ϕ is an isomorphism for all xi ̸= xl.

Now we let xi be variables and consider det(ϕ) as a non-constant function in C[x1, . . . , xs].

For any set of values of b0, . . . , bn−1 and x1, . . . , xs such that i ̸= l, we have that ϕ is an

invertible linear map and det(ϕ) ̸= 0 for any xi ̸= xl. Then det(ϕ) does not vanish on the

quasi-affine space defined by equations {xi ̸= xl| ∀i ̸= l}. So det(ϕ) can only have factors

that are xi − xl for some i ̸= l.

When we assume that xi ̸= xl, the determinant det(ϕ) never vanishes, and ϕ is invertible.

By construction, ϕ−1 maps each bj to a linear combination of bij with coefficients being



50 HILBERT SCHEME OF POINTS ON NON-REDUCED CURVES

rational functions in x1, . . . , xs, such that the denominator of each rational function is det(ϕ),

a product of xi − xl where i ̸= l.

In the localized ring, xi ̸= xl, so we have the ring isomorphism

⊗
i=1,...,s

C[xi, b
i
0, . . . , b

i
mi−1]p

∼= C[x0, . . . , xs, b0, . . . , bn−1]p.

By Lemma 8.17, ϕ(rij) is the coefficient of the term xj in the polynomial long division r(x)

mod (x−xi)
mi . So by the property of ϕ we just showed, ϕ linearly changes variables between

the collection rij and the collection rj. So the ideals in the corresponding polynomial rings

satisfy (r0, . . . , rmi−1)p ∼= (r10, . . . , r
i
j, . . . , r

s
ms−1)p.

The isomorphism of the quotient rings follows from the isomorphisms of the polynomial

rings and the ideals we’re quotienting them out with. □

Corollary 8.18. The multiplicity at a generic point p of Σm1,...,ms is
∏

i(β −mi + 1).

Proof. The multiplicity of Σm1,...,ms is the C-dimension of the algebra C[x0,...,xs,b0,...,bn−1]p
(r0,...,rn−1)p

. By

the isomorphism in the theorem above, its dimension is equal to the product of the dimensions

of
C[xi,b

i
0,...,b

i
mi−1]p

(ri0,...,r
i
mi−1)p

, which are β −mi + 1 as we computed in the last section. □

8.3. Generalization: multiplicity of the irreducible components of any curve C.

Theorem 8.19. Recall that the irreducible components of Hilbn(C) are indexed by partitions

m1
1, . . . ,m

j
i , . . . ,m

r
sr and each mj

i ≤ βj for all i and j. The multiplicity of the component

indexed by m1
1, . . . ,m

j
i , . . . ,m

r
sr is Πi,j(β −mj

i + 1).
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Proof. Locally, the component Σm1
1,...,m

1
s1

,...,mr
1,...,m

r
sr

have the same multiplicity as the prod-

uct of the components: Σm1
1,...,m

1
s1
× · · · × Σmr

1,...,m
r
sr
, where each Σmj

1,...,m
j
sr

is a stratum of

Hilbn({yβj = 0}). Therefore the multiplicity of the component indexed by

m1
1, . . . ,m

1
s1
, . . . ,mr

1, . . . ,m
r
sr is Πi,j(βj −mj

i + 1). □

Chapter 4: The nested Hilbert scheme of points

9. Stratification of the nested punctual Hilbert scheme of points on the

affine plane and on a plane curve

Lemma 9.1. The special nested Hilbert scheme of points C [n,n+i][z] can be decomposed into

strata C [n,n+i][z] ∼=
⋃n

k=0(C \{z})[n−k]×C
[k,k+i]
z . Here (C \{z})[n−k] denotes the (non-nested)

Hilbert scheme of points on the subset of a curve C minus a point z on the smooth part of

C.

Proof. For every pair of ideals (I, J) ∈ C [n,n+i][z], it can be uniquely written as the intersec-

tion of ideals as follows I = I1 ∩ I2, J = J1 ∩ J2, such that I1 = J1 is supported away from

the point z, and π(J2) = k[z], π(I2) = (k + i)[z], where π denotes the Hilbert-Chow map,

and k ∈ {0, ..., n}.

Therefore, there’s an isomorphism from C [n,n+i][z] to
⋃n

k=0(C\{z})[n−k]×C
[k,k+i]
z by sending

(I, J) to (I1, I2, J2), where I1 ∈ (C \ {z})[n−k], and (I2, J2) ∈ C
[k,k+i]
z . □
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10. Special nested Hilbert schemes of points

When i = 1, fix a point z on the smooth part of the (underlying reduced) plane curve C.

We classify the top-dimensional irreducible components of the special nested Hilbert scheme

of points C [n,n+1][z].

Because many properties of the Hilbert scheme are local, we start by working with the

curve Y = {yβ = 0}, and generalize the results to any plane curve C.

Lemma 10.1. When k ≤ β−1, Y
[k,k+1]
0

∼= (C2)
[k,k+1]
0 . When k > β−1, Y

[k,k+1]
0 ⊊ (C2)

[k,k+1]
0 .

Proof. (1) When k ≤ β − 1, one side of the containment Y
[k,k+1]
0 ⊂ (C2)

[k,k+1]
0 is obvious.

Suppose a pair of ideals (I, J) ∈ Y
[k,k+1]
0 , then it must be true that I ⊂ (C2)

[k]
0 and J ⊂

(C2)
[k+1]
0 , and that I ⊂ J by definition. Therefore (I, J) ∈ (C2)

[k,k+1]
0

To prove the other containment, (C2)
[k,k+1]
0 ⊂ Y

[k,k+1]
0 , consider a pair of ideals (I, J) ∈

(C2)
[k,k+1]
0 . We need to show that the polynomial yβ is contained in I ⊂ J in order to show

that (I, J) ∈ Y
[k,k+1]
0 .

As explained in Nakajima’s book [8], an ideal A in (C2)[k] the Hilbert scheme of k points

on the plane can be represented by a k dimensional vector space VA = C[x, y]/A with an

action of n by n square matrices XA and YA such that the matrix XA and the matrix YA

each correspond to multiplication of elements in the vector space VA by the variable x and

y. It’s also required that there exists a vector 1 ∈ VA such that XiYj · 1 span VA.
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When we require that the ideal I is contained in (C2)
[k+1]
0 the punctual Hilbert scheme of

points on the plane, the matrices XI and YI acting on the vector space VI are both nilpotent

and of dimension k + 1 by k + 1.

Because YI is nilpotent of dimension k+1 by k+1, write it in the Jordan block form, and

YI is a matrix with 0’s on the diagonal and some 1’s and 0’s on the upper skew diagonal. So

taking the k+1-th power gives (YI)
k+1 = 0. The polynomial yk+1 corresponding to the action

by the element 1 by the matrix YI for k+1 times is equal to 0, i.e. yk+1 ·1 = (YI)
k+1 ·1 = 0,

and therefore contained in the ideal I. Because of the assumption k ≤ β − 1, yβ is also

contained in the ideal I as an element. So yβ ∈ I ⊂ J and (I, J) ∈ (C2)
[k,k+1]
0 .

(2) When k > β − 1, take the pair of ideals (J, I) = ((x, yk), (x, yk+1)) ∈ (C2)
[k,k+1]
0 .

Because β < k+1, (x, yk+1) is not in ({yβ = 0})[k+1], so the pair ((x, yk), (x, yk+1)) is not in

C
[k,k+1]
0 .

□

Now consider any plane curve C. Recall that C can be decomposed into components Cj

with corresponding multiplicities βj. Fix a point zj on the smooth part of the component

Cj of the curve C, and consider the special nested punctual Hilbert scheme of points on the

curve C
[k,k+1]
zj . We have a similar lemma as above.
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Lemma 10.2. Fix a point zj on the smooth part of the component Cj of the curve C, and

consider the nested punctual Hilbert scheme of points on the curve C
[k,k+1]
zj . When k ≤ βj−1,

C
[k,k+1]
zj

∼= (C2)
[k,k+1]
0 . When k > βj − 1, C

[k,k+1]
zj ⊊ (C2)

[k,k+1]
0 .

Proof. When zj is on the smooth part of the curve component Cj, locally near the point zj

we can reparametrize and find local coordinates such that Czj is isomorphic to the curve Y .

Therefore, the properties of C
[k,k+1]
zj follow immediately from Lemma 10.1. □

Corollary 10.3. When k > β − 1, the irreducible components of C
[k,k+1]
zj have dimension

k − 1 or less.

Proof. Because (C2)
[k,k+1]
0 is irreducible of dimension k, as in Theorem 3.4 [9], the nested

punctual Hilbert scheme C
[k,k+1]
0 as a proper closed subset of (C2)

[k,k+1]
0 has dimension less

than k. □

Theorem 10.4. The special nested Hilbert scheme C [n,n+1][z] has dimension n, can be de-

composed as C [n,n+1][z] ∼=
⋃n

k=0(C \ {z})[n−k] ×C
[k,k+1]
z . The top dimensional components

of the special nested punctual Hilbert scheme of points on the curve C
[k,k+1]
z are given as

follows.

Pick a positive integer k where k ≤ β − 1, and a tuple of positive integers

m1
1, ...,m

a1
1 |m1

2, ...,m
a2
2 |...|m1

j , ...,m
aj
j separated by bars, such that mi

j ≤ β, the sum of all

mi
j equals n − k, and that the numbers between each bar are unordered though the bars are

ordered.



HILBERT SCHEME OF POINTS ON NON-REDUCED CURVES 55

Each n dimensional component of the special nested Hilbert scheme C [n,n+1][z] is isomor-

phic to the closure of Σ
m1

1,...,m
a1
1 |m1

2,...,m
a2
2 |...|m1

j ,...,m
aj
j
× (C2)[k,k+1], where

Σ
m1

1,...,m
a1
1 |m1

2,...,m
a2
2 |...|m1

j ,...,m
aj
j

are the components of (C \ {z})[n−k] as classified in Theorem

5.2 and 5.3.

Proof. Stratify the special nested Hilbert scheme C [n,n+i][z] ∼=
⋃n

k=0(C \ {z})[n−k] × C
[k,k+i]
z

as in Lemma 9.1. The irreducible components of (C \ {z})[n−k] are the (n− k)-dimensional

Σ
m1

1,...,m
a1
1 |m1

2,...,m
a2
2 |...|m1

j ,...,m
aj
j

where each mi
j ≤ β, as classified in Theorem 5.2 and 5.3.[10]

Apply Lemma 10.2. When k > β − 1, C
[k,k+1]
zj has dimension less than k, so its product

with Σ
m1

1,...,m
a1
1 |m1

2,...,m
a2
2 |...|m1

j ,...,m
aj
j

has total dimension less than n.

When k ≤ β − 1, C
[k,k+1]
z is irreducible of dimension k, and isomorphic to (C2)

[k,k+1]
0 , so

its product with Σ
m1

1,...,m
a1
1 |m1

2,...,m
a2
2 |...|m1

j ,...,m
aj
j

are components of dimension n. □

11. Components of the nested Hilbert scheme of points on a curve

Now we consider projection maps from the nested Hilbert scheme C [n,n+1] to the curve C

defined as follows.

Definition 11.1. Define a projection map p : C [n,n+1] → C as sending (I, J) ∈ C [n,n+1] to

π(I)− π(J), where π is the Hilbert-Chow morphism.

Remark 11.2. For a singular point z̃, denote the fiber under the projetion map p as Fz̃.

For a point zj on the smooth part of the curve component Cj, denote the fiber under the

projetion map p as Fzj .
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We give a lower bound of the dimension of the components of the nested Hilbert scheme

of points on a curve, C [n,n+1].

Lemma 11.3. The irreducible components of the nested Hilbert scheme of points on a curve

C [n,n+1] have dimension at least n+ 1.

Proof. By work of Cheah [11], the nested Hilbert scheme of points on the affine plane,

(C2)[n,n+1], is smooth of dimension 2n+ 2.

The nested Hilbert scheme of points on a curve, C [n,n+1], is a subscheme of (C2)[n,n+1]

obtained by imposing one extra condition that the polynomial f(x, y) defining the curve

C to be contained as an element in the pair of ideals (I, J). It’s sufficient to require only

f(x, y) ∈ I because I ⊂ J .

Fix one such pair of ideals (I, J) ⊂ (C2)[n,n+1]. Consider the affine chart Uµ × Vν of

(C2)[n+1] × (C2)[n], where Uµ is the chart on (C2)[n+1] containing the ideal I, and Vν is the

chart on (C2)[n] containing the ideal J .

When imposing the condition f(x, y) ∈ I ∈ Uµ, we write f(x, y) as a linear combination

of the monomial basis Bµ, and the coefficients of those basis elements should be set to

0 because we want f(x, y) ∈ I. There are n + 1 basis elements, thus the corresponding

coefficients being set to 0 gives n+1 equations on (C2)[n+1] × (C2)[n], further cutting up the

subscheme (C2)[n,n+1] inside (C2)[n+1] × (C2)[n].



HILBERT SCHEME OF POINTS ON NON-REDUCED CURVES 57

We have n+1 equations cutting an 2n+2 dimensional nested Hilbert scheme of points on

the plane (C2)[n,n+1], so the irreducible components of the nested Hilbert scheme of points

on the curve C [n,n+1] have dimension at least n+ 1.

□

Keeping this in mind, we study both the fibers Fz̃ of the map p at the singular points,

and the fibers Fzj at the smooth points of the curve C.

Lemma 11.4. The fibers Fz̃ and Fzj both have dimension at most n.

Proof. Fix a point z̃ on the curve C that is singular, the fiber Fz̃ is the pair of ideals

(I, J) ⊂ C [n,n+1] such that π(I) − π(J) = z̃. So the fiber Fz̃ is exactly isomorphic to the

special nested Hilbert scheme of points on the curve C [n,n+1][z̃].

Use Lemma 9.1 and decompose the special nested Hilbert scheme of points on the curve

C [n,n+i][z̃] ∼=
⋃n

k=0(C \ {z̃})[n−k] × C
[k,k+1]
z̃ .

The Hilbert scheme of n − k points on the curve C has dimension n − k, as proved in

Theorem 5.4, and the nested punctual Hilbert scheme of points C
[k,k+1]
z̃ has dimension at

most k, as it is a subset of the nested punctual Hilbert scheme of points on the plane

(C2)[k,k+1]. So the fiber Fz̃ has dimension at most n in total.

Fix a point zj on the smooth part of some curve component Cj. The argument is exactly

the same as above and we have the isomorphism Fzj
∼= C [n,n+1][zj]. As proved in Theorem
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10.4, the special nested Hilbert scheme of points C [n,n+1][zj] at a smooth point zj on the

curve C has dimension n, so the fiber Fzj also has dimension n. □

Theorem 11.5. The nested Hilbert scheme of points C [n,n+1] has dimension n + 1. The

components of the nested Hilbert scheme of points C [n,n+1] are all locally trivial fibrations

over the base C, and the fibers are

Σm1
1,...,m

a1
1 |m1

2,...,m
a2
2 |...|m1

t ,...,m
at
t
× (C2

0)
[k,k+1]

where Σm1
1,...,m

a1
1 |m1

2,...,m
a2
2 |...|m1

t ,...,m
at
t

are the components of C [n−k] as classified in Theorems

5.2 and 5.3, (C2
0)

[k,k+1] is the nested punctual Hilbert scheme of points on the plane C2.

Proof. The fiber Fz̃ at the singular points has dimension n or less as proved in Lemma 11.4,

and its product with the 0 dimensional singularity points z̃ has dimension n or less. We

know from Lemma 11.3 that the dimension of the irreducible components of C [n,n+1] is at

least n+ 1, so the product does not have dimension big enough to be a component.

The fiber Fzj has dimension n as in the proof of Lemma 11.4. And the product Fzj × Cj

with the curve component has dimension n+ 1.

All of the n dimensional components of the fiber Fzj are classified in Theorem 10.4, and

they are given by Σ
m1

1,...,m
a1
1 |,m1

2,...,m
a2
2 |,...,m1

j ,...,m
aj
j

× (C2)[k,k+1]. So these n dimensional com-

ponents of Fzj taking product with its corresponding curve component Cj is the n + 1

dimensional components of the nested Hilbert scheme C [n,n+1].
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Because all the components of C [n,n+1] are at least n + 1 dimensional by Lemma 11.3,

there are no other components of C [n,n+1]. Thus, the classification is complete. The nested

Hilbert scheme of points C [n,n+1] has dimension n+ 1. □

Corollary 11.6. The nested Hilbert scheme of points C [n,n+1] is a local complete intersection

in (C2)[k,k+1].

Proof. The n + 1 nested Hilbert scheme of points C [n,n+1] is cut out by n + 1 equations in

the 2n+ 2 dimensional (C2)[k,k+1], so C [n,n+1] is a local complete intersection in (C2)[k,k+1].

□

From the nested Hilbert scheme of points on the curve C, C [n,n+1], we can project it to

the Hilbert scheme of n and n+ 1 points on the curve, C [n] and C [n+1].

Definition 11.7. Construct two projection maps p+ and p− as follows: p− : C [n,n+1] →

C [n+1], and p+ : C [n,n+1] → C [n] × C.

Define p+((I, J)) = (I, z), where z = π(I)− π(j) and π is the Hilbert-Chow map.

Define p−((I, J)) = I.

Lemma 11.8. The map p− is proper.

Proof. Use Lemma 9.1 and decompose the special nested Hilbert scheme of points on the

curve C [n,n+i][z] ∼=
⋃n

k=0(C \ {z})[n−k] × C
[k,k+i]
0 .
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The projection map p−((I, J)) = I under the decomposition becomes p−((I1, I2, J2)) =

(I1, J2), where I1, I2, J2 are the same ideals that appeared in the proof of Lemma 9.1. Recall

from the proof of Lemma 9.1 that I = I1 ∩ I2, J = J1 ∩ J2, I1 = J1, I1 ∈ C [n−k], and

(I2, J2) ∈ C
[k,k+i]
0 . So p− can be decomposed as p− = id × p−

′ where id is the identity map

on C [n−k], and p−
′ is the projection map on C

[k,k+i]
0 that sends (I2, J2) ∈ C

[k,k+i]
0 to I2.

The map p−
′ is projective and therefore proper, and its product with the identity map is

also proper.

□
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