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Abstract

We relate key elements of contact geometry to thermodynamics. We
also investigate contact structures with metrics and their relationship
to thermodynamic systems. In particular, we study the singularities
of these metrics and compare them to the thermodynamic phase tran-
sitions of the Euler-Heisenberg-AdS black hole.

1. Introduction

Contact geometry concerns the study of smooth manifolds where each tan-
gent space is suitably assigned a hyperplane. It originated in the work of
Sophus Lie as a tool for studying differential equations [10]. Contact geom-
etry has many applications in mathematics and physics, ranging from knot
theory to quantum mechanics [4, 17, 33].

Contact geometry was used in thermodynamics by Gibbs [1, 12]. Later
authors introduced metrics [32, 38], with some combining both contact struc-
tures and metrics [18, 29], to study thermodynamic interactions. The Ricci
scalars of these metrics have been computed for various thermodynamic
systems and their singularities are attributed with thermodynamic phase
transitions, including the phase transitions of black holes [31].

Black holes are a feature of Einstein’s theory of general relativity. They
are extreme astronomical objects that, remarkably, turn out to be com-
pletely characterized by a few physical parameters, like mass, angular mo-
mentum, and charge (the so-called no hair theorems; see [7, 40, 41]). Of
particular interest is the surface area of a black hole’s event horizon. Hawk-
ing [13, 14] and Bekenstein [3] showed that the surface area behaves like an
entropy in standard thermodynamics. As such, black holes have a history of
being studied as thermodynamic objects. One of the earlier explorations of
black hole thermodynamics was Hawking and Page’s investigation of black
holes in an Anti-de Sitter (AdS) space, where they identified phase transi-
tions by analogy to standard thermodynamics [15]. Black hole thermody-
namics is still an active area of study (see [8] for a helpful primer and [36]
for a 2018 review article).

Accordingly, many authors subject black holes to investigations with
thermodynamic metrics, where they try to associate the singularities of the
Ricci scalars with thermodynamic phase transitions [18, 26, 31]. We will
show, however, that not all singularities of these metrics correspond with
phase transitions as obtained in standard thermodynamics, which are the
points where the specific heat of a system diverge.
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We begin by providing some first principles of contact geometry in Sec-
tion 2. Section 3 identifies a contact structure for thermodynamics and
introduces thermodynamic metrics. Section 4 applies the developments of
Section 3 to a black hole.

2. Contact Geometry

Definition 2.1. Let M be a (2n+1)-dimensional smooth manifold. A con-
tact structure on M is a smooth hyperplane distribution ξ ⊂ TM such that
any smooth defining 1-form α [23, p. 493] satisfies the maximally noninte-
grable condition:

α ∧ (dα)n 6= 0,

where (dα)n = dα∧ ...∧dα is the n-fold wedge product. A globally defined α
is called a contact form, and the pair (M, ξ) is called a contact manifold.

Remark. A contact form α is not uniquely defined. One can multiply any
such α by a nowhere vanishing smooth function f and still obtain a contact
form for a given contact structure. This is because fα shares the same
kernel as α and it is still maximally nonintegrable, which one can see with
a calculation:

(fα) ∧ (d(fα))n = fα ∧ (f dα+ df ∧ α)n

= fn+1α ∧ (dα)n 6= 0.

The following lemma captures a slightly stronger notion.

Lemma 2.2. Let (M, ξ) be a contact manifold. Suppose α1 and α2 are
contact forms for the hyperplane distribution ξ. Then α1 = fα2 for some
smooth nonvanishing function f : M → R.

Proof. Since α1 and α2 are both contact forms for ξ, we have kerα1 = ξ =
kerα2. These 1-forms can be thought of as vectors in the cotangent space
that are some scalar multiple of each other.

To construct f , let p ∈ M and pick any nonzero vector vp ∈ TpM \
kerα1|p. Define f : M → R pointwise with

f(p) =
α1|p(vp)
α2|p(vp)

.

The function f is independent of vector chosen in the 1-dimensional linear
subspace TpM \kerα1|p because any other nonzero vector up in the subspace
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is some scalar multiple of vp. This factor cancels out by linearity of 1-forms
and definition of f .

By construction, f is nonvanishing and α1 = fα2. Since α1 and α2 are
smooth, the function f is smooth.

Example 2.3. Let us endow R2n+1 3 (x1, y1, ..., xn, yn, z) with the 1-form

α = dz −
n∑
i=1

yidxi.

Together, (R2n+1, α) is a contact manifold. In the case of R3, the con-
tact form α = dz − ydx defines the hyperplane distribution ξ = kerα =
span{∂y, y∂z + ∂x}.

We can verify that α is maximally non-integrable by computing

α ∧ (dα)n = −

(
dz −

n∑
i=1

xidyi

)
∧

 n∑
j=1

dxj ∧ dyj
n

. (1)

The 2n wedge products only have nonvanishing terms of the form dx1 ∧
dy1∧ ...∧dxn∧dyn and its permutations. By permuting the 1-forms in pairs
dxi ∧ dyi, these terms never pick up a negative sign and thus do not cancel
out. The sum ends up being n!. Thus (1) becomes

α ∧ (dα)n = −n!dz ∧ dx1 ∧ dy1 ∧ ... ∧ dxn ∧ dyn,

which is a nonvanishing top form on R2n+1. //

Remark. The contact structure in the above example is sometimes called the
standard contact structure on R2n+1. This contact structure is already of
interest. For example, Legendrian knots are closed 1-dimensional immersed
submanifolds [23, p. 108] in R3 which are tangent to the standard contact
structure. Figure 1 shows a sampling of hyperplanes from this contact struc-
ture and Figure 2 shows a typical way of presenting these Legendrian knots.

Definition 2.4. Let (M, ξ) be a contact manifold. An immersed submani-
fold L of (M, ξ) is called isotropic if TpL ⊂ ξp for every p ∈ L ⊂M .

Remark. Note that L is isotropic if and only if i∗α = 0, where i is the
inclusion map i : L ↪→ M . This is because for any v ∈ TpL, (i∗α)p(v) =
αp(dipv) = 0 if and only if v ∈ ξp.

Contact geometry is closely related to its even-dimensional counterpart,
called symplectic geometry. This is because the contact form induces a
symplectic tensor on each contact hyperplane.
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Figure 1: A selection of hyperplanes lying along the y-axis from the stan-
dard contact structure on R3. The planes are given by ker(dz − y dx) =
span(∂y, y∂z + ∂x). Normal vectors ∂z − y∂x to the hyperplanes are drawn
in red.

Figure 2: The “front projections” of two Legendrian knots from the standard
contact structure on R3 onto the xz plane [33]. The blue knot is an unknot
and the red knot is a trefoil. Given a point on the front projection, the y
coordinate of a Legendrian knot is determined by the slope dz/dx at that
point (see [33] and Example 2.10). More pictures of Legendrian knots may
be found in [28, 33].
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Definition 2.5. A 2-covector ω on a finite-dimensional vector space V is
said to be nondegenerate if ωn 6= 0. A nondegenerate 2-covector is also
called a symplectic tensor or a symplectic bilinear form. The data (V, ω) is
called a symplectic vector space [23, p. 565].

Remark. That V must be even-dimensional can be derived from the nonde-
generacy condition. There are also other equivalent definitions for nonde-
generacy.

Lemma 2.6. Let (V, ω) be a symplectic vector space. The following are
equivalent:

(a) ωn 6= 0.

(b) The linear map ω̃ : V → V ∗ defined by ω̃(v) = ω(v, ·) is invertible.

(c) For every nonzero v ∈ V , there exists w ∈ V such that ω(v, w) 6= 0.

(d) There exists some (and therefore every) basis such that the matrix
(ωij) representing ω is non-singular.

Proof sketch. We will show (b)⇔(c), (b)⇔(d), and (a)⇔(c).

• (b)⇔(c) By definition, ω̃ is invertible if and only if it is injective (since
it is a linear map between two finite-dimensional vector spaces of the
same dimension), which is equivalent to ω having trivial kernel.

• (b)⇔(d) Let {ei} be a basis for V and {Ei} be its dual basis for V ∗.
In this basis, the linear map can be written as

ω̃(ei)ej = ω(ei, ej) = ωij .

Then

ω̃ is invertible⇔ ∃ ω̃−1 such that ω̃−1(ω̃(v)) = v for all v ∈ V
⇔ for every ei, ω̃

−1(ω̃(ei)) = ei

⇔ ω̃−1(ω̃(ei)ejE
j) = ei (insert 1 = δjj = ejE

j)

⇔ ω̃(ei)ejω̃
−1(Ej)Ek = δki

⇔ ∃ ωij such that ωijω
jk = δki (ωjk = ω̃−1(Ej)Ek)

⇔ the matrix representing ω is nonsingular.
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• (c)⇔(a) To satisfy (⇒), construct a symplectic basis [23, p. 566] for
ω. Then by a similar calculation as in Example 2.3, ωn 6= 0. To
satisfy (⇐), take the contrapositive. The negation of (c) implies
that ω̃ has nontrivial kernel, containing some nonzero v ∈ V . One
can then extend v to a basis (v,E2, E3, ..., E2n) for V , such that
ωn(v,E2, ..., E2n) = ιvω

n(E2, ..., E2n) = 0 by definition of interior
multiplication and ω(v) = 0.

We can extend these definitions of symplectic bilinear forms on vector
spaces to a symplectic structure on smooth manifolds.

Definition 2.7. Let M be a smooth manifold. A nondegenerate 2-form
on M is a 2-form ω such that ωp is a nondegenerate 2-covector on TpM for
every p ∈ M (making TpM into a symplectic vector space). The 2-form ω
is also called a symplectic form or symplectic structure. The data (M,ω) is
called a symplectic manifold [23].

Remark. Since its tangent spaces must be even-dimensional, the manifold
M is also even-dimensional. While contact manifolds are odd-dimensional,
the contact structure assigns an even-dimensional hyperplane in each tan-
gent space. The contact form then induces a symplectic bilinear form on
each hyperplane.

Lemma 2.8. Let (M, ξ = kerα) be a contact manifold. Then (ξp, dα|ξp) is
a symplectic vector space, where dα|ξp is defined by

dα|ξp : ξp → ξ∗p

v 7→ dα(v, ·).

Proof. The maximally non-integrable condition α∧ (dα)n 6= 0 requires that
(dα)n 6= 0 everywhere. Thus dα|ξp satisfies the nondegeneracy condition by
construction and we conclude that (ξp, dα|ξp) is a symplectic vector space.

The existence of a symplectic bilinear form on a vector space provides
a generalized notion of orthogonality, much like how regular inner products
do, with the distinction being that symplectic tensors are antisymmetric
products. Given a linear subspace S of a symplectic vector space (V, ω), the
symplectic complement of S, denoted S⊥, is the subspace

S⊥ = {v ∈ V | ω(v, w) = 0 for all w ∈ S}.
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All of these symplectic notions come together to prove this following result
in contact geometry.

Proposition 2.9. Let (M2n+1, ξ = kerα) be a contact manifold. If L is an
isotropic submanifold of M , then dimL ≤ n. In the case where dimL = n,
we call L a Legendrian submanifold of M .

Proof. [11, p. 13] For every p ∈ L, since TpL ⊂ ξp, ι∗α = 0 (Definition 2.4).
Since the exterior derivative commutes with pullbacks, we have ι∗dα = 0.
Thus, for every u, v ∈ TpL, dα|ξp(u, v) = 0.

Since the hyperplanes are symplectic vector spaces, let us consider the
symplectic complement of TpL, the linear subspace (TpL)⊥ ⊂ ξp given by

(TpL)⊥ = {v ∈ ξp | dα|ξp(u, v) = 0 for every u ∈ TpL}.

Note that TpL ⊂ (TpL)⊥ since dα|ξp(u, v) = 0 for every u, v ∈ TpL. Thus
dimTpL ≤ dim(TpL)⊥. We would like use these two spaces TpL and (TpL)⊥

alongside a rank-nullity theorem argument to identify dimTpL and therefore
dimL.

To this end, construct the linear map ϕ : ξp → T ∗pL by

ϕ(v)(w) = dα(v, w),

where v ∈ ξp and w ∈ TpL. By Lemma 2.8, dα|ξp is nondegenerate. Thus
by Lemma 2.6(b), for any w ∈ T ∗pL ⊂ ξ∗p , there exists v ∈ ξp such that
dα(v, ·) = w. Thus the map is surjective and im ϕ = T ∗pL

∼= TpL. Next,

kerϕ = (TpL)⊥ by construction of ϕ(v). Hence we have a linear map between
vector spaces and the rank-nullity theorem gives

dim ξp = dim im ϕ+ dim kerϕ

2n = dimTpL+ dim(TpL)⊥.

Since dimTpL ≤ dim(TpL)⊥, we have dimTpL ≤ n such that dimL ≤ n.

Remark. This proposition and its proof illustrates two key ideas about
contact geometry. Firstly, the hyperplane distribution ξ fails to admit an
integral manifold (an immersed submanifold S satisfying TpS = ξp for every
p ∈ S) . The immersed submanifolds tangent to the distribution have half
the distribution’s dimension at most. Secondly, contact geometry is closely
related to symplectic geometry (see Example 2.13); one could even use the
data of a symplectic manifold to create a contact manifold [11, p. 8].
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Example 2.10. Smooth functions on a manifold can be used to create a
contact manifold [1]. This example uses Euclidean space for clarity, but the
construction is generalizable to smooth manifolds.

Let q be a point in Rn and ϕ : Rn → R a smooth function. The 1-jet at
q of ϕ, denoted J1

q (ϕ), is the truncated first order Taylor polynomial of ϕ;
explicitly, it is

J1
q (ϕ) = ϕ(q) +

∂ϕ

∂xi
(q)xi

where q = (x1, ..., xn) ∈ Rn. This data of a 1-jet at q of ϕ is in 1-1 corre-
spondence with a point in R2n+1. For example, labeling pi = ∂ϕ/∂xi, the
1-jet J1

q (ϕ) labels the point (q, ϕ(q), p) ∈ R2n+1. As such, there is a notion
of a natural contact structure [1, p. 163] that one can give to the space of
1-jets, thought of as R2n+1.

Given a smooth function ϕ, its differential induces Legendrian subman-
ifolds in the following sense. The so-called 1-graph of a function ϕ is the
subset

Γ(ϕ) =

{(
q, ϕ(q),

∂ϕ

∂x
(q)

)}
⊂ J1(Rn,R) .

The 1-form α = dy−p dx, where y is the (n+1)th coordinate corresponding
to ϕ(q), is pulled back to zero on every 1-graph by the inclusion map ι :
Γ(ϕ)→ J1(Rn,R):

ι∗α = ι∗(dy − p dx) = dϕ− ∂ϕ

∂x
dx = 0 .

Here, α is the contact form from Example 2.3 up to renaming coordinates.
The 1-graphs of smooth functions are thus Legendrian submanifolds. //

Example 2.11. Given any Bn+1 dimensional smooth manifold, one can
create a contact manifold with the following construction [1].

A contact element at a point p ∈ B is a hyperplane Hp in the tangent
space TpB. One can think of a contact element as the specification of the n
partial derivatives in a 1-jet from Example 2.10. The data of a hyperplaneHp

is equivalent to an equivalence class of covectors αp ∈ T ∗pB which annihilates
every vector in Hp. The equivalence relation is obtained by using the fact
that two covectors which are scalar multiples of each other determine the
same hyperplane. Thus contact elements at p ∈ B are also equivalence
classes of covectors in T ∗pB.
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The space of all contact elements at every p ∈ B can be shown to be the
projectivized cotangent bundle PT ∗B. This space has a fiber bundle struc-
ture, where a model fiber at p is the space of rays in T ∗pB. In coordinates, a
point in PT ∗B can be labeled by (u, x1, ..., xn, p1, ..., pn), where u, x1, ..., xn

are coordinates for B and p1, ..., pn are covector coefficients. In light of
the 1-jets example, u are the possible values that a real-valued function of
x1, ..., xn can take on, and p1, ..., pn are the possible partial derivatives. //

Having seen some examples of contact structures and contact forms, let
us introduce a method of comparing two structures and seeing whether or
not they are the same.

Definition 2.12. Let (M1, α1) and (M2, α2) be contact manifolds. A dif-
feomorphism f : M1 → M2 is called a contact transformation or contacto-
morphism if there exists a smooth nowhere vanishing function λ : M1 → R
such that

f∗α2 = λα1.

If λ = 1, we call this a strict contactomorphism.

Example 2.13. Contact geometry shows up in various ways in physics. For
example, the Lagrangian formulation of classical mechanics postulates that
classical systems can be described by an action S, defined by

S[γ(t)] =

∫
γ
L(q, q̇, t) dt.

Here, S is a functional of a path γ in some phase space and L is the La-
grangian for the system, where q, q̇, and t are coordinates for the system,
which can be thought of as positions, velocities, and time respectively. The
classical solution to the equations of motion is the path γ(t) that extrem-
izes S.

The Hamiltonian formulation is related to the Lagrangian formulation
through a Legendre transform (see §3.2.1). Taking H(q, p, t) as a Hamilto-
nian, where p is the momentum, its corresponding Lagrangian L(q, q̇, t) is
given by

H(q, p, t) = pq̇ − L(q, q̇, t).

We can thus rewrite the action as

S =

∫
γ
(pq̇ −H) dt.
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The integrand is a local expression for the pullback of the contact form
α = p dq − H dt defined on some manifold M with local coordinates q, p,
and t. Thus we can write

S =

∫
γ
α .

This is one method of producing classical mechanics using contact geom-
etry. Other formulations can be found in [6, 11]. For an application to
quantization, see [17]. //

3. Thermodynamics

Every mathematician knows that it is impossible to understand any
elementary course in thermodynamics.

Contact Geometry: the Geometrical Method of Gibbs’s Thermodynamics
V.I. Arnold [1]

Contact geometry naturally describes thermodynamics. We will begin with
an observation about Legendrian submanifolds of a contact manifold before
identifying a general contact structure for thermodynamic systems.

3.1 Constructing Legendrian Submanifolds

Recall from our 1-jets example (Example 2.10) that smooth functions on Rn
can induce Legendrian submanifolds in R2n+1 with the standard contact
structure. However, given a smooth function f on Rn, there are other ways
of constructing a Legendrian submanifold in R2n+1.

Proposition 3.1. [2, 6] Let (R2n+1, α) be the contact manifold from Ex-
ample 2.3. Let ItJ be a disjoint partition of {1, ..., n} with i ∈ I and j ∈ J .
The coordinates (xI , xJ , yI , yJ , z) ∈ R2n+1 are the same coordinates as in
Example 2.3, but with some specific indices identified.

Suppose f(xJ , yI) is a smooth function of only n coordinates p = (xJ , yI).
Define the smooth embedding

ϕ : Rn → R2n+1

where ϕ(p) = (xI(p), xJ , yI , yJ(p), z(p)) and

xi(p) = − ∂f
∂yi

(p), yj(p) =
∂f

∂xj
(p), and z = f(p)− yi

∂f

∂yi
(p). (2)

The image of ϕ, denoted L ⊂ R2n+1, is a Legendrian submanifold.
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Remark. Example 2.10 is the I = ∅ case of this proposition.

Proof. To see that the map ϕ is a smooth embedding, note that its differen-
tial is injective; its Jacobian is a (2n+ 1)×n matrix that contains the n×n
identity as a block due to the ∂xJ/∂xJ and ∂yI/∂yI terms. Furthermore, it
is a homeomorphism onto its image since f is smooth and ϕ is an invertible
map between Rn and L. Therefore its image is an embedded (and thus
immersed) submanifold [23, p. 99].

Next we check if L is isotropic. Computing the pullback of α under the
inclusion map, we obtain

ι∗α = ι∗(dz − yadxa) = ι∗(dz − yidxi − yjdxj)

= d

(
ϕ− yi

∂ϕ

∂yi

)
+ yid

(
∂ϕ

∂yi

)
− ∂ϕ

∂xj
dxj

=
∂ϕ

∂yi
dyi +

∂ϕ

∂xj
dxj − yid

(
∂ϕ

∂yi

)
− ∂ϕ

∂yi
dyi + yid

(
∂ϕ

∂yi

)
− ∂ϕ

∂xj
dxj

= 0.

Thus L is a maximal dimension isotropic immersed submanifold, a Legen-
drian submanifold.

For those familiar with standard thermodynamics, the defining formu-
las (2) specify a Legendre transformation between different thermodynamic
potentials, constructing a new potential z from f . Given a generating func-
tion, its associated Legendrian submanifold is the space of equilibrium states
where all the equations of state are satisfied. Let us clarify these ideas by
identifying a contact structure for thermodynamics.

3.2 Thermodynamic Contact Structure

We will start with the full thermodynamic phase space1 and introduce a
contact structure for it [6, 18, 29].

Definition 3.2. A thermodynamic system is the data of

(i) a (2n+ 1)-dimensional smooth manifold T called the thermodynamic
phase space, with coordinates Φ, Ea, and Ia where a ∈ {1, ..., n}, and

(ii) a real-valued function called a fundamental equation Φ = Φ(Ea), also
called a thermodynamic potential.

1There are other methods that start with the smaller space of equilibrium states and
constructs a contact manifold [27] as in Example 2.11.
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The manifold T is given the Gibbs 1-form Θ, defined by

Θ = dΦ− δabIadEb.

Remark. The variables Ea and Ia are sometimes called extensive and in-
tensive parameters respectively. Fixing an index a, Ea and Ia are said to
be conjugate to each other. A general thermodynamic potential Φ is a func-
tion of n of these parameters such that no two parameters are a conjugate
pair. For example, one can think of the yi’s in Proposition 3.1 as extensive
parameters, the xj ’s as intensive parameters, and the function f as a ther-
modynamic potential. The variables which f depends on we call defining
variables.

Lemma 3.3. The pair (T ,Θ) is a contact manifold.

Proof. The structure given above is the same as the one in Example 2.3.

Definition 3.4. Given the data of a thermodynamic system, the space of
equilibrium states E is the subspace of the thermodynamic phase space T
defined as the image of the smooth embedding ϕ : E → T , where

ϕ : (Ea) 7→ (Φ(Ea), Ea, Ia(Ea)) and ϕ∗(Θ) = 0.

Recall that Φ = Φ(Ea) the thermodynamic potential was specified by the
thermodynamic data.

Lemma 3.5. On the space of equilibrium states E ⊂ T with a given ther-
modynamic potential Φ = Φ(Ea), we have

∂Φ

∂Ea
= δabI

b.

The equations are also called equations of state.

Proof. We compute the pullback condition ϕ∗(Θ) = 0. Given p ∈ E ⊂ T ,
we have

ϕ∗p(Θ) = ϕ∗p(dΦ− δabIadEb)
= dΦp − δabIa(p)dEbp

=
∂Φ

∂Ea
(p)dEap − δabIa(p)dEbp = 0 .
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Figure 3: On the left, a PV diagram with two isotherms (constant tempera-
ture lines) plotted at temperatures T1 and T2. Each point on the line labels
an equilibrium state of the ideal gas. On the right, a sheet of isotherms be-
tween T1 and T2 for the ideal gas. The grey sheet is a slice of the immersed
submanifold L. The other two axes U and S have been suppressed.

This gives us

∂Φ

∂Ea
(p) = δabI

b(p)

as desired.

Remark. There are two useful ways of thinking about E . One can choose to
think of it as just the n-dimensional space with the defining parameters (Ea)
as the coordinates or, as Proposition 3.1 and Lemma 3.5 show, a Legendrian
submanifold of T .

Example 3.6. The classical ideal gas model describes the behavior of dilute
gases. Its thermodynamic phase space T is coordinatized by five thermo-
dynamic parameters: total internal energy U , temperature T , entropy S,
pressure P , and volume V .

There are various fundamental equations that we can choose for this
system. Each choice is called a representation. In the internal energy repre-
sentation, the fundamental equation is given by U = U(S, V ), which gives
internal energy as a function of entropy and volume. The explicit formula
can be found in [19, p. 140].
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Our thermodynamic phase space is the contact manifold (T ,Θ). In the
energy representation, the Gibbs 1-form Θ is

Θ = dU − T d+ P dV.

By Lemma 3.5, T and P are defined by

T =
∂U(S, V )

∂S
and −P =

∂U(S, V )

∂V
(3)

on the space of equilibrium states. The negative sign is by convention. We
see that we recover the definitions of temperature and pressure in standard
thermodynamics. Evaluating the partial derivatives, we obtain the equations
of state:

T =
2

3

U(S, V )

Nk
and P =

2

3

U(S, V )

V
. (4)

The classical ideal gas law PV = NkT follows from the above. It is also often
called an equation of state. Here, N is particle number and k is Boltzmann’s
constant.

Points on the Legendrian submanifolds are equilibrium states. Let L be
a 2-dimensional subspace of T defined by

L = {(U(P, V ), T (P, V ), S(P, V ), P, V )} ⊂ {(U, T, S, P, V )} = T

where

U(P, V ) =
3

2
PV, T (P, V ) =

Nk

PV
, and S = S(P, V ) .

In the remark after Definition 3.2, we claimed that the thermodynamic po-
tential (generating function) is not a function of both extensive and intensive
variables in a conjugate pair, yet here the internal energy is a function of
both P and V .

This discrepancy is resolved by our equations of state and repeated vari-
able substitution using equations (3) and (4). For entropy in particular, the
first equation of (3) gives temperature T = T (S, V ) which can be inverted
to find S(T, V ). Then substituting in the ideal gas law gives S(P, V ). This
is then substituted into U(S, V ) to obtain U(P, V ). Figure 3 illustrates the
Legendrian submanifold L. //

Remark. Note that the Gibbs 1-form Θ recovers the first law of thermo-
dynamics on the space of equilibrium states. The smooth embedding pulls
back Θ to zero, so one could write

0 = dU − T dS + P dV ⇒ dU = T dS − P dV,
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which is the usual presentation of the first law for the ideal gas as the
differential of a function.

Generic thermodynamic potentials are convex functions of the extensive
variables, such that

∂2Φ

∂Ea∂Eb
≥ 0.

This enables us to perform Legendre transformations to obtain new ther-
modynamic potentials.

3.2.1 Legendre Transformations

Whenever we are given a convex function, we can consider an equivalent de-
scription of the function in terms of its first derivative because first derivative
values are in 1-1 correspondence with points in the function’s domain. This
encapsulates the idea of a Legendre transformation [2, pp. 61-62].

Definition 3.7. Let f : R→ R be a smooth, convex function, i.e., f ′′(x) > 0.
The Legendre transformation of f is a new function g : R → R defined as
follows. Construct the function F : R2 → R by

F (x, p) = f(x)− px.

For p ∈ R, define x(p) ∈ R by

0 =
∂F

∂x
(x(p), p) = f ′(x(p))− p.

Then g(p) = F (x(p), p) = f(x(p))− px(p).

Remark. Given p, the point in the original function’s domain, x(p) is
uniquely defined since f is convex.

Example 3.8. Consider again our ideal gas example in the energy repre-
sentation U = U(S, V ). Internal energy is convex with respect to entropy.
Thus we can perform a Legendre transform to a new potential F (T, V ). We
follow the construction in Definition 3.7.

Let F̃ (S, T, V ) = U(S, V ) − TS. The entropy S(T ) is uniquely defined
by convexity of U . Thus

F (T, V ) = F̃ (S(T ), T, V ) = U(S(T ), V )− TS(T ),
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or F = U −TS for short. This potential is called the Helmholtz free energy
[19, p. 22]. In terms of Proposition 3.1, F is another generating function for
a Legendrian submanifold. //

Remark. As in Definition 3.7 where we exchange a point x in the domain
of f for the corresponding derivative value p, here we exchange a defining
variable S for its conjugate T .

Staying in the energy representation, there are two more potentials that
can be obtained by repeatedly applying Legendre transforms to the internal
energy U . These are

H = U + PV and G = U − TS + PV,

the enthalpy and Gibbs free energy respectively. These potentials are used
in chemistry and physics to characterize equilibrium states of various ther-
modynamic systems. For example, a closed system, like a box of gas, kept
at constant temperature will be in an equilibrium state when the Helmholtz
free energy is minimized [19, p. 23], which is equivalent to the vanishing
of the pulled-back Gibbs 1-form. Furthermore, some thermodynamic vari-
ables, like entropy, are not easily measurable in a laboratory, so Legendre
transformations can give equivalent descriptions of the system in terms of
more easily measurable quantities, like temperature.

For general thermodynamic systems we define Legendre transforms as
follows, which turn out to be a set of strict contactomorphisms.

Definition 3.9. Given a thermodynamic system, let (T ,Θ) and (T̃ , Θ̃) be
two thermodynamic phase spaces coordinatized by Φ, Ea, Ia and Φ̃, Ẽa, Ĩa

respectively. A partial Legendre transformation of the thermodynamic sys-
tem is a map ϕ : T̃ → T given by

ϕ : (Φ̃, Ẽa, Ĩa) 7→ (Φ, Ea, Ia)

such that

Φ = Φ̃− δk`ĨkẼ`, Ei = −Ĩi, Ej = Ẽj , Ii = Ẽi, Ij = Ĩj ,

I t J is a disjoint partition of {1, ..., n}, i, k, ` ∈ I, and j ∈ J . The identity
and total Legendre transformations have I = ∅ and I = {1, ..., n} respec-
tively.

Example 3.10. Let us return to the ideal gas system, with the phase spaces
T and T̃ coordinatized by {Φ, E1, E2, I1, I2} and {Ũ , S̃, Ṽ , T̃ ,−P̃} respec-
tively. A partial Legendre transformation with i = {1} gives

E1 = −T̃ , E2 = Ṽ , I1 = S̃, I2 = −P̃ ⇒ Φ = Ũ − T̃ S̃.
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Here we recognize Φ as the Helmholtz free energy. If i = {1, 2} we have the
following total Legendre transformation

E1 = −T̃ , E2 = P̃ , I1 = S̃, I2 = Ṽ ⇒ Φ = Ũ − T̃ S̃ + P̃ Ṽ

giving us the Gibbs free energy. Taking i = {2} will similarly give enthalpy.

Lemma 3.11. Let (T ,Θ) and (T̃ , Θ̃) be two thermodynamic phase spaces
of a thermodynamic system. Then the map ϕ : T̃ → T given by Definition
3.9 is a strict contactomorphism.

Proof. The map ϕ is invertible; the defining and conjugate variables are
either mapped to themselves or exchanged with their conjugates, which can
be inverted by contracting with a kronecker delta. The potential is inverted
by substituting in the conjugates for the δk`Ĩ

kẼ` term. Furthermore, ϕ is
smooth since it is a map from coordinate functions to sums and products of
coordinate functions. Thus ϕ is a diffeomorphism.

Next, let us compute ϕ∗(Θ). We have

ϕ∗(Θ) = ϕ∗(dΦ− δabIadEb)
= dΦ̃− δk`ĨkdẼ` − δk`ẼkdĨ` − (δrsĨ

rdẼs + δk`I
kdE`)

= dΦ̃− δk`ĨkdẼ` − δk`ẼkdĨ` − δrsĨrdẼs − δk`Ẽkd(−Ĩ`)
= dΦ̃− δabĨadẼb = Θ̃.

Here, k, ` ∈ I and r, s ∈ J as originally defined, and a, b range over all n.
Thus ϕ is a strict contactomorphism.

3.3 Thermodynamic Metrics

There have been various approaches to studying thermodynamics by intro-
ducing metrics (both Riemannian and pseudo-Riemannian) on either the
space of equilibrium states or thermodynamic phase space [32, 38]. By
analogy to Einstein’s theory of general relativity, the Ricci scalars of those
metrics are often interpreted as a measure of thermodynamic interaction.
Of particular interest are singularities in the curvature scalars, which are
often interpreted as phase transitions [30].

This section will provide coordinate expressions for metrics on the space
of equilibrium states, which are obtained by pulling back metrics defined
on the thermodynamic phase space using the smooth embedding of Defini-
tion 3.4. With these coordinate expressions, we will then compute curvature
scalars in the following section, enabling us to investigate whether or not
curvature singularities come in 1-1 correspondence with phase transitions.
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3.3.1 Metrics and Contact Structures

Given a contact manifold, there is a notion of an associated metric to the
contact structure. It is the contact geometry analogue of an almost complex
structure from symplectic geometry [5, 34].

Definition 3.12. Let (M,η) be a contact manifold and R the Reeb vector
field. Let X,Y be arbitrary vector fields on M . A Riemannian metric G is
said to be an associated metric if

η(X) = G(X,R) (5)

and there exists a (1, 1)-tensor field φ such that

φ2 = −Id + η ⊗R (6)

and

dη(X,Y ) = G(X,φY ). (7)

Here Id is the identity. The data (φ,R, η,G) where G is an associated metric
is said to be a contact metric structure.

Remark. Any vector X in the distribution is orthogonal to the Reeb with
respect to the metric G by virtue of (6). Furthermore, the (1,1)-tensor maps
arbitrary vectors to a vector in the distribution; given an arbitrary vector
field Y , the vector field φY is orthogonal to the Reeb with respect to G:

0 = dη(R, Y ) = G(R,φY ) = η(φY ) . (8)

Thus φY is in the distribution. When restricted to vectors in the distribu-
tion, we also recover the almost complex structure φ2 = −Id.

Let us give a coordinate expression for φ. By Darboux’s theorem, there
exists a neighborhood with coordinates (xi, yi, z), i ∈ {1, ..., n}, such that
the contact form becomes η = dz − yi dx

i. The hyperplanes of the con-
tact structure in this neighborhood are thus spanned by the 2n vectors ∂yi
and yi∂z + ∂xi . Including the Reeb vector ∂z, these 2n+ 1 vectors span the
tangent spaces at each point in the neighborhood. One possible φ is defined
by the following action on basis vectors:

φ(∂z) = 0, φ(∂yi) = (yi∂z + ∂xi), φ(yi∂z + ∂xi) = −∂yi .

For other constructions, see [24]. Locally φ can be written as

φ =
n∑
i=1

[
dyi ⊗ (yi∂z + ∂xi)− dxi ⊗ ∂yi

]
. (9)
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Example 3.13. Given a contact structure, there are infinitely many as-
sociated metrics; an explicit construction can be found in [5, p. 47]. The
construction is far from canonical due to a choice of arbitrary starting Rie-
mannian metric. Here is one possible associated metric on the contact man-
ifold (R2n+1, η) where η is the standard contact form (Example 2.3) [4, 5,
24]. Given arbitrary vector fields X and Y , define the metric G by

G(X,Y ) = η(X)η(Y ) + dη(φX, Y ).

The (1,1)-tensor φ is given by Equation (9), where the Darboux coordinates
are identified with global coordinates on R2n+1. Let us check that G is an
associated metric. Let R be the Reeb vector field. The metric G readily
satisfies Equation (5):

G(X, ξ) = η(X)⊗ η(R) + 0 = η(X).

We now check the orthogonality requirement (7):

G(X,φY ) = G(φY,X)

= η(φY )η(X) + dη(φ2Y,X)

= η(φY )η(X) + dη(−Y + η(Y )R,X)

= dη(−Y,X) + η(Y )dη(R,X) + η(φY )η(X)

= dη(X,Y ) + η(φY )η(X).

It may seem by virtue of Equation (8) that η(φY ) = 0 depends on the
metric. It turns out that this is not the case; that η ◦φ = 0 is a consequence
of (5) [5, p. 43]. Thus G(X,φY ) = dη(X,Y ), so G is an associated metric.
Using Equation (9) and evaluating dη, one can write down G in coordinates:

G = η ⊗ η +

n∑
i=1

[(dxi)2 + (dyi)
2] .

//

While we are interested in associated metrics because we will use them
to study thermodynamics, it is worth mentioning some related structures
derived from the contact form. For example, an almost contact structure
on an odd-dimensional smooth manifold is the data of (φ,R, η), where η
is a contact form, R is the Reeb vector field, and φ is a (1, 1)-tensor field
satisfying φ2 = −Id + η ⊗ ξ. A compatible metric g to the almost contact
structure is a metric that satisfies

g(φX, φY ) = g(X,Y )− η(X)η(Y ) .
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Altogether, (φ,R, η, g) is said to be an almost contact metric structure. A
compatible metric does not necessarily satisfy the associated metric condi-
tion dη(X,Y ) = g(X,φY ).

A para-contact metric structure [24] (ϕ,R, η,G) is defined the same as
in Definition 3.12, but the (1, 1)-tensor field ϕ instead satisfies

ϕ2 = Id− η ⊗R .

The metric G is still said to be an associated metric and the triplet (ϕ,R, η)
is said to be an almost para-contact structure.

3.3.2 Distances Between Equilibrium States

As we have stated, to study equilibrium states, we need to pull these as-
sociated metrics back to the space of equilibrium states using the smooth
embedding (Definition 3.4). However, the first attempts to use metrics to
study thermodynamics introduced metrics only on the space of equilibrium
states without regard to the overall thermodynamic phase space and its
contact structure. The following two ad hoc metrics

gR = − ∂2S

∂Ea∂Eb
dEa dEb

gW =
∂2U

∂Ea∂Eb
dEa dEb

by Ruppeiner [32] and Weinhold [38] respectively are metrics on the equi-
librium space, using either entropy or internal energy as a distinguished
thermodynamic potential.

These metrics were derived from physical arguments and offer some in-
tuition about thermodynamic metrics. For example, Ruppeiner’s metric gR

is derived from fluctuation arguments [32]. An equilibrium state of a ther-
modynamic system is characterized by some x = (x1, ..., xn) variables on
the space of equilibrium states, but it can fluctuate to some other state x′

on the space of equilibrium states. One can characterize the probability dis-
tribution obtained after many measurements of this thermodynamic system
with a Gaussian distribution w(∆x) [22, p. 343], where ∆x = x′ − x is the
fluctuation, i.e., the difference between two points. The second moment of
w is then taken as the inverse of gR. The components of gR can thus be
thought of as an “inverse variance.” Given a neighboring point x′ of the
mean x, if the distribution has a high variance, then gR will think that x′

and x are closer together than if the distribution has a low variance.
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It turns out that these two metrics are related in the sense that they
can both be obtained from pulling back a covariantly defined metric of a
para-contact metric structure. Let (T ,Θ) be a thermodynamic phase space.
Given arbitrary vectors X and Y on T , define the metric G with

G(X,Y ) = Θ(X)Θ(Y )− dΘ(ϕX, Y )

where the (1, 1)-tensor ϕ satisfies ϕ2 = Id− η⊗ ξ. Take ϕ in coordinates to
be

ϕ = dEi ⊗ ∂

∂Ei
− dIi ⊗ ∂

∂Ii

in local coordinates and i ∈ {1, ..., n} [24]. The metric G is an associated
metric to the almost para-contact structure (ϕ,R,Θ) by similar reasoning
to Example 3.13. In coordinates, G becomes

G = Θ⊗Θ− δab dIa dEb

where a and b are indices running from 1 to n. The smooth embedding
pulls G back to the metric

g = − ∂2Φ

∂Ea∂Eb
dEa dEb (10)

on the space of equilibrium states. The metrics of Ruppeiner and Weinhold
are thus specific cases of this metric.

3.3.3 Legendre Invariant Metrics

Given a metric on the thermodynamic phase space, one could also ask about
Legendre transformations acting on the metric.

Example 3.14. Let us write the associated Riemannian metric from Ex-
ample 3.13 in the coordinates of a thermodynamic phase space:

Ga = Θ⊗Θ + δab( dE
a dEb + dIa dIb). (11)

A feature of this metric is that it is Legendre invariant, i.e., the Legendre
transform ϕ of Definition 3.9 induces the following isometry.

Let (T ,Θ, Ga) be the phase space and metric as defined above, let (T̃ , Θ̃)
be a thermodynamic phase space for the same thermodynamic system, and
take ϕ to be a Legendre transform ϕ : T̃ → T . We give T̃ the metric

G̃a = Θ̃⊗ Θ̃ + δab( dẼ
a dẼb + dĨa dĨb).
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Lemma 3.11 gives ϕ∗Θ = Θ̃. The remaining forms we can compute:

ϕ∗(δab( dE
a dEb + dIa dIb))

= ϕ∗

∑
i∈I

(dEi)2 +
∑
j∈J

(dEj)2 +
∑
i∈I

(dIi)2 +
∑
j∈J

(dIj)2


=
∑
i∈I

(dĨi)2 +
∑
j∈J

(dẼj)2 +
∑
i∈I

(dẼi)2 +
∑
j∈J

(dĨj)2

=
n∑
a

[(dẼa)2 + (dĨa)] = δab( dẼ
a dẼb + dĨa dĨb).

Thus ϕ∗Ga = G̃a as desired. //

Definition 3.15. Let (T ,Θ) and (T̃ , Θ̃) be two thermodynamic phase
spaces for a thermodynamic system. Suppose G is a metric on (T ,Θ).
Construct the new metric G̃ on (T̃ , Θ̃) by defining

G̃(Φ̃, Ẽa, Ĩa) = G(Φ = Φ̃, Ea = Ẽa, Ia = Ĩa).

If the Legendre transform ϕ : T̃ → T from Definition 3.9 induces the isom-
etry ϕ∗G = G̃, then the metric G is said to be Legendre invariant [29].

The rationale behind considering this class of metrics is that standard
thermodynamics is Legendre invariant; one can perform Legendre transfor-
mations to equivalent descriptions of the system. The metrics GI and GII ,
given by

GI = Θ⊗Θ + (δijE
iIj)(δcd dE

c dId) and

GII = Θ⊗Θ + (δijE
iIj)(ηcd dE

c dId),

where η is the diagonal n× n matrix diag(−1, 1, ..., 1), are two such metrics
which have been used for thermodynamics [31]. Pulling these back to the
space of equilibrium states, we obtain the metrics

gI =

(
Ec

∂Φ

∂Ec

)(
∂2Φ

∂Ea∂Eb
dEa dEb

)
and (12)

gII =

(
Ec

∂Φ

∂Ec

)(
ηabδ

bc ∂2Φ

∂Ec∂Ed
dEa dEd

)
. (13)
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3.4 Metrics and Phase Transitions

The metrics of §3.3 have been used to study various thermodynamic systems.
The methodology is to first find a fundamental equation for a thermody-
namic system, secondly to construct the metric of interest in coordinates,
and finally to compute its Ricci scalar [29]. The singularities of these scalars
are then compared with the points where the heat capacities of a thermody-
namic system diverge. Given a change in heat with corresponding change in
temperature of a thermodynamic system, then the ratio of these two quan-
tities is a specific heat. Heat capacities are often computed and measured
with respect to a thermodynamic variable that is held constant. The points
where a heat capacity diverges, indicates the existence of a phase transi-
tion. For example, the heat capacity at constant pressure diverges for the
water-steam phase transition at standard temperature and pressure.

In standard thermodynamics, heat capacities Cx are computed with

Cx = T
∂S

∂T
(14)

where U , T , and S are internal energy, temperature, and entropy [9]. Here x
stands for thermodynamic variables that are held constant when differenti-
ating. Heat capacities are functions of thermodynamic variables. If there are
points where Cx diverges, then we say that the system has a phase transition
at those points.

In geometric thermodynamics, it is argued that the singularities of the
Ricci scalar of the metric under are exactly the phase transitions for a ther-
modynamic system [29, 32]. While this is the case for some systems, let us
turn our attention where this is false; not all singularities are phase transi-
tions.

4. Black Holes

4.1 A Fundamental Equation

One black hole which seems to have not been explored using thermodynamic
metrics is the Euler-Heisenberg-AdS black hole. It is a charged, nonrotating
black hole with cosmological constant, with an additional parameter called
the Euler-Heisenberg parameter [25]. The Euler-Heisenberg parameter a ap-
pears as a nonlinear correction term to the standard Lagrangian for classical
electrodynamics. Roughly speaking, a characterizes the pair production of
virtual electron-positron pairs that exist in vacuum. For further discussion,
see [16]. The Euler-Heisenberg-AdS black hole, being parameterized by its
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mass M , charge Q, cosmological constant Λ, and Euler-Heisenberg param-
eter a, is an extension of the Reissner-Nordström-AdS black hole, which is
characterized by mass, charge, and cosmological constant.

Regardless of whether we wish to treat this with standard thermodynam-
ics or metrics, we need a fundamental equation. The nonlinear correction to
the Lagrangian modifies the electromagnetic stress-energy tensor T in Ein-
stein’s field equations by adding higher order (in a) couplings of the Maxwell
tensor F to T (see [25] for explicit formulas). The following metric

ds2 = −f(r) dt2 +
1

f(r)
dr2 + r2dΩ2,

where

f(r) = 1− 2M

r
+
Q2

r2
− Λr2

3
− aQ4

20r6
, (15)

solves the modified Einstein’s field equations with cosmological constant [25].
Due to the 1/f(r) in the metric, the largest root r = r+ of f(r) is the event
horizon of the black hole (it is a null hypersurface, see [25, II.B]). We identify
the mass of the black hole as

M =
r+
2
−

Λr3+
6

+
Q2

2r+
− aQ4

40r5+
.

Hawking’s result shows that the entropy S of a black hole is S = A/4 in
natural units, where A = 4πr2+ is the surface area of the event horizon [14].
Substitution provides a formula for the mass

M =

√
S

4π

(
1− ΛS

3π
+
Q2π

S
− aQ4π3

20S3

)
. (16)

As given, Λ and a are constants of the theory. However, there is a sense in
which they should be allowed to vary. The mass of a black hole, being a
function of dimensionful physical quantities, will satisfy Euler’s homogenous
function theorem, which states that if a smooth function f(x, y) satisfies

f(αrx, αsy) = αqf(x, y)

for some real number α and integers r, s, and q, then

qf(x, y) = rx
∂f

∂x
+ sy

∂f

∂y
.
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This result holds in general for smooth functions of n variables. Our version
of the theorem is obtained through the chain rule [cf. 39].

All the physical quantities defining our mass M must be summed and
multiplied together so that the overall dimension matches that of mass,
which leads us to this homogeneity argument. The resulting quadratic form
for the mass is then a function of all the defining variables and their conju-
gates. This argument originated with Smarr [35].

Applying the theorem to M where α is an arbitrary constant, note that

M(α2S, αQ, α−2Λ, α2a) = αM(S,Q,Λ, a).

Therefore

M(S,Q,Λ, a) = 2S

(
∂M

∂S

)
+Q

(
∂M

∂Q

)
− 2Λ

(
∂M

∂Λ

)
+ 2a

(
∂M

∂a

)
.

Taking

T =
∂M

∂S
, Φ =

∂M

∂Q
, Ψ =

∂M

∂Λ
, and A =

∂M

∂a
,

we obtain the Smarr formula [25, eq. 26] for the Euler-Heisenberg-AdS black
hole

M = 2TS + ΦQ− 2ΛΨ + 2aA .

By Euler’s theorem, one can see that in the quadratic form for M , the
defining parameters come paired with their conjugates. For some physical
intuition, the cosmological constant behaves as a pressure term [20, 21], Ψ is
a volume, Φ is an electric potential, a is a polarization, and A is an electric
field. The Smarr formula being a quadratic form of these eight variables sup-
ports the choice of (S,Q,Λ, a) as being the set of defining parameters (i.e.,
coordinates for the space of equilibrium states, a Legendrian submanifold)
for the mass.

Some authors [26, 30, 37] still consider the choice (S,Q) as being the set
of defining parameters (for a Reissner-Nordström-AdS black hole), especially
in regards to the use of Ruppeiner’s metric (§3.3.2) to analyze thermody-
namics. Let us compare these two choices by analyzing metrics defined using
either this reduced phase space with parameters S,Q or the extended phase
space with parameters S,Q,Λ, and a.

26



4.2 Curvature Scalars

Following the procedure, let us compute the heat capacity at constant
charge CQ (see Equation (14)):

CQ = T
∂S

∂T
=

∂SM

∂SSM
=

2S(4ΛS4 − π4Q4a+ 4π2Q2S2 − 4πS3)

4ΛS4 + 7π4Q4a− 12π2Q2S2 + 4πS3
. (17)

The divergences in CQ occur at zeroes of the denominator:

0 = 4ΛS4 + 7π4Q4a− 12π2Q2S2 + 4πS3. (18)

It is also useful to consider the denominator in terms of r+ (see (15)) instead.
Using S = πr2+, (18) becomes

4Λr8+ + 4r6+ − 12Q2r4+ + 7Q4a.

Another interesting feature of CQ are the zeroes of the numerator that come
from the polynomial (in S) term

0 = 4ΛS4 − π4Q4a+ 4π2Q2S2 − 4πS3.

These zeroes indicate sign changes of CQ. In terms of r+, this becomes

4Λr8+ − 4r6+ + 4Q2r4+ −Q4a.

Black holes can have negative heat capacities. Physically speaking, a nega-
tive heat capacity indicates that as the black hole emits Hawking radiation,
its temperature increases. A positive heat capacity is the opposite; for an
everyday example, a mug of coffee cools down by emitting infrared radiation
and its temperature decreases asymptotically to room temperature. A black
hole with a positive CQ is said to be stable and a negative CQ is said to be
unstable [15, 25].

Let us now compute the scalar curvatures of the metrics g (10), gI (12),
and gII (13) and see if their singularities correspond the points where CQ di-
verges. We use SageMath to express the curvature scalars in the form N/D,
where N and D are factored polynomials over the integers. Possible curva-
ture singularities are thus given by zeroes of D; we will numerically check
the behavior of the curvature scalar around the zeroes to see if it is a genuine
singularity.

In the reduced phase space, Table 1 shows that gII recovers the diver-
gence in the heat capacity whereas g and gI do not. However, the metric
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Table 1: Denominators of scalar curvature D for metrics g, gI , and gII , in
the reduced phase space with M = M(S,Q), and comparison with CQ

Metric D Agreement

g
(π6Q6a2 − 26π4Q4S2a+ 12π2ΛQ2S4a

+12π3Q2S3a+ 40π2Q2S4 − 40ΛS6 − 40πS5)2
no

gI
(π6Q6a2 − 26π4Q4S2a+ 12π2ΛQ2S4a

+12π3Q2S3a+ 40π2Q2S4 − 40ΛS6 − 40πS5)2

×
(
3π4Q4a− 60π2Q2S2 + 20ΛS4 − 20πS3

)3 no

gII

(
7π4Q4a− 12π2Q2S2 + 4ΛS4 + 4πS3

)2
×
(
3π4Q4a− 60π2Q2S2 + 20ΛS4 − 20πS3

)3
×
(
3π2Q2a− 10S2

)2 partial

Table 2: Denominators of scalar curvature D for metrics g, gI , and gII , in
the extended phase space with M = M(S,Q,Λ, a) and comparison with CQ

Metric D Agreement

g 1 no

gI Q2
(
3π4Q4a− 36π2Q2S2 + 20ΛS4 − 12πS3

)3
no

gII potentially has additional singularities; let us check the behavior of the
Ricci scalar around the zeroes of these other polynomials.

Let us fix values for a,Λ, and Q2, plot the denominator of the heat
capacity (18) as a polynomial in S (or r+), and check if the other polynomials
vanish at some S before the heat capacity diverges. Taking a = 1, Λ = −3,
and Q = 0.8 [25], the heat capacity diverges at approximately S ≈ 1.75, but
the other polynomial has a zero at S ≈ 0.53. Numerically, the curvature
scalar of gII at S ≈ 0.53 does diverge, so this is an additional singularity that
does not come from the divergence of the heat capacity. Thus gII only has
“partial” agreement with the divergence of CQ; it recovers the divergence
of CQ but introduces additional singularities. The metrics g and gI disagree
because they do not recover the divergence of CQ at all.

In the extended phase space, gII is degenerate and therefore not a met-
ric on the space of equilirium states. Table 2 shows that g has 1 as its
denominator of scalar curvature, but it turns out that the Ricci scalar van-
ishes. Both g and gI fail to reproduce the phase transition structure in the
extended phase space.
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Table 3: Denominators of scalar curvature D for the metric g, in the reduced
phase space with variable potentials F (T,Q) and Ω(T,Φ), and comparison
with CQ

Potential D Agreement

F

Q6
(
4Λr8 + 4Q2r4 − 4r6 −Q4a

)
×
(
4Λr8 − 12Q2r4 + 4r6 + 7Q4a

)4
×
(
10r4 −Q2a

)6 partial

Ω
P 5
25P

2
20

(
4 Λr8 − 12Q2r4 + 4 r6 + 7Q4a

)
×
(
10 r4 −Q2a

)2(
2 r4 −Q2a

)3
r12

partial

Note: Here, P25 and P20 are polynomials with 25 and 20 terms respectively.
The denominators are expressed in terms of r = r+ instead of S due to the
chain ruling used when computing metric coefficients.

Since G is not Legendre invariant, the curvature scalar of g is not neces-
sarily preserved by Legendre transformations. On the reduced phase space,
we can transform M(S,Q) into three other potentials

F (T,Q) = M − TS, H(S,Φ) = M − ΦQ, and Ω(T,Φ) = M − TS − ΦQ.

Table 3 gives the denominators of scalar curvature in these different ther-
modynamic representations. The potential H induces a degenerate matrix
and thus does not provide a metric on the space of equilibrium states.

The potentials F and Ω induce metrics that are singular at the diver-
gence of CQ, but they also introduce additional divergences. For example,
the metric derived from F has an additional singularity at r+ ≈ 0.5 (tak-
ing a = 1,Λ = −3, and Q = 0.8 again) due to the (10r4 − Q2a) term,
which occurs before the heat capacity divergence at r+ ≈ 0.85. Numeri-
cally, r+ ≈ 0.5 is a genuine singularity. The numerator of the heat capacity
also appears, although it does not vanish in this case. In other cases though,
the numerator of a black hole’s heat capacity may not vanish [30, p. 978]
and induce singularities.

5. Discussion

Metrics may not be the right objects to consider when describing thermo-
dynamic interactions. These thermodynamic metrics might produce exactly

29



the divergences of the heat capacity as curvature sinularities for less “patho-
logical” black holes like the Kerr or Reissner-Nordström black holes [26, 30,
37], but this is not always the case. As we have seen, any singularities in the
metrics could either correspond to points where the heat capacity diverges,
the zeroes of the heat capacity, or neither, and the only way to figure this out
is to have already computed the heat capacity, which defeats the purpose of
using metrics in the first place. As such, one cannot assign these singularities
a singular interpretation, of being phase transitions or otherwise.

Furthermore, the computational difficulty increases significantly. To
check which polynomials in the denominators of the scalar curvatures are
vanishing or nonvanishing, we must calculate and factor the Ricci scalar,
which can take a lot more time than computing heat capacities. For exam-
ple, calculating D for Ω in Table 3 took about four hours on a CPU running
at roughly 3.5 GHz; the heat capacity calculation to obtain (17) finished in
under a second. Treating thermodynamics with metrics is a computation-
ally intensive task that is not guaranteed to produce the phase transitions
of standard thermodynamics.

However, contact geometry still captures interesting thermodynamic in-
formation. For example, the Legendrian submanifolds of a thermodynamic
phase space already contain information about critical points. At the level of
Legendrian submanifolds, critical points are points where certain derivatives
of equations of state vanish in the submanifold. Critical points are inter-
esting in their own right, though they are also related to phase transitions.
Despite these metric shortcomings, contact geometry naturally describes
equilibrium thermodynamics.
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[21] D. Kubizňák and R.B. Mann. “P −V criticality of charged AdS black
holes”. In: (2012).

[22] L.D. Landau and E.M. Lifshitz. Statistical Physics. 2nd ed. 1970.

[23] J.M. Lee. Introduction to Smooth Manifolds. 2nd ed. 2013.

[24] C.S. Lopez-Monsalvo et al. “Contact polarizations and associated met-
rics in geometric thermodynamics”. In: Journal of Physics A (2021).
doi: 10.1088/1751-8121/abddeb.

[25] D. Magos and N. Breton. “Thermodynamics of the Euler-Heisenberg-
AdS black hole”. In: Physical Review D 102 (2020). doi: 10.1103/
PhysRevD.102.084011.

[26] S.A.H. Mansoori and B. Mirza. “Correspondence of phase transition
points and singularities of thermodynamic geometry of black holes”.
In: The European Physical Journal C (2014). doi: 10.1140/epjc/
s10052-013-2681-6.

[27] R. Mruga la. “Geometrical Formulation of Equilibrium Phenomeno-
logical Thermodynamics”. In: Reports on Mathematical Physics 14
(1978).

[28] L. Ng. Gallery of Legendrian Knots. 2012. url: https://services.
math.duke.edu/~ng/knotgallery.html (visited on 09/04/2023).

[29] H. Quevedo. “Geometrothermodynamics”. In: Journal of Mathemati-
cal Physics 48 (2007). doi: 10.48550/arXiv.physics/0604164.

[30] H. Quevedo. “Geometrothermodynamics of black holes”. In: General
Relativity and Gravitation (2008). doi: 10.1007/s10714-007-0586-
0.

[31] H. Quevedo et al. “Phase transitions in geometrothermodynamics”.
In: General Relativity and Gravitation (2011).

[32] G. Ruppeiner. “Thermodynamics: A Riemannian geometric model”.
In: Physical Review A 20 (1979).

32

https://doi.org/10.48550/arXiv.0904.2765
https://doi.org/10.1088/1751-8121/abddeb
https://doi.org/10.1103/PhysRevD.102.084011
https://doi.org/10.1103/PhysRevD.102.084011
https://doi.org/10.1140/epjc/s10052-013-2681-6
https://doi.org/10.1140/epjc/s10052-013-2681-6
https://services.math.duke.edu/~ng/knotgallery.html
https://services.math.duke.edu/~ng/knotgallery.html
https://doi.org/10.48550/arXiv.physics/0604164
https://doi.org/10.1007/s10714-007-0586-0
https://doi.org/10.1007/s10714-007-0586-0


[33] J.M. Sabloff. “What is... a Legendrian Knot?” In: Notices of the
AMS (2009).

[34] S. Sasaki. “On differentiable manifolds with certain structures which
are closely related to almost contact structure I”. In: (1960).

[35] L. Smarr. “Mass Formula for Kerr Black Holes”. In: Physical Review
Letters 30.2 (1973), pp. 71–73.

[36] A.C. Wall. “A Survey of Black Hole Thermodynamics”. In: (2018).
doi: 10.48550/arXiv.1804.10610.

[37] P. Wang, H. Wu, and H. Yang. “Thermodynamic geometry of AdS
black holes and black holes in a cavity”. In: The European Physical
Journal C 80.216 (2020).

[38] F. Weinhold. “Metric geometry of equilibrium thermodynamics”. In:
The Journal of Chemical Physics 63 (1975). doi: 10.1063/1.431689.

[39] E.W. Weisstein. Euler’s Homogeneous Function Theorem. url: https:
//mathworld.wolfram.com/EulersHomogeneousFunctionTheorem.

html (visited on 09/21/2023).

[40] I. Werner. “Event horizons in static electrovac space-times”. In: Com-
munications in Mathematical Physics 8 (1968).

[41] I. Werner. “Event Horizons in Static Vacuum Space-Times”. In: Phys.
Rev. 164 (1967). doi: 10.1103/PhysRev.164.1776.

33

https://doi.org/10.48550/arXiv.1804.10610
https://doi.org/10.1063/1.431689
https://mathworld.wolfram.com/EulersHomogeneousFunctionTheorem.html
https://mathworld.wolfram.com/EulersHomogeneousFunctionTheorem.html
https://mathworld.wolfram.com/EulersHomogeneousFunctionTheorem.html
https://doi.org/10.1103/PhysRev.164.1776

	Introduction
	Contact Geometry
	Thermodynamics
	Constructing Legendrian Submanifolds
	Thermodynamic Contact Structure
	Legendre Transformations

	Thermodynamic Metrics
	Metrics and Contact Structures
	Distances Between Equilibrium States
	Legendre Invariant Metrics

	Metrics and Phase Transitions

	Black Holes
	A Fundamental Equation
	Curvature Scalars

	Discussion
	Acknowledgements
	References

