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Abstract

Single-mode squeezed states exhibit a direct correspondence with
points on the Poincaré disk. In this study, we delve into this correspon-
dence and describe the motions of the disk generated by a quadratic
Hamiltonian. This provides a geometric representation of squeezed
states and their evolution. We discuss applications in bang-bang and
adiabatic control problems involving squeezed states.
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1 Introduction

Geometric representations of quantum states constitute essential tools of
quantum mechanics. Widely employed examples include the Bloch sphere
representation for qubits [5, 7] and the complex plane representation for
coherent states [8], both extensively detailed in quantum mechanics text-
books. The Bloch sphere captures the states of a two-level system in a
one-to-one manner. For systems beyond two levels, a comprehensive repre-
sentation in low-dimensional space becomes impossible. However, it is still
possible to represent a sub-manifold, such as the aforementioned coherent
states. Another option is to represent classes of states, e.g. states of two
qubits modulo local unitary [1]. These geometric representations serve as
frameworks, enabling us to conceptualize quantum states and their dynamic
cvolution through classical analogics. A comprehensive reference for geo-
metric representations is a book [4] and a review [2].

This study delves into the representation of ground states of quadratic
Hamiltonians, commonly referred to as squeezed states. We show that
squeczed states can be represented on the Poincaré disk model of hyperbolic
geometry. Within this mapping, the evolution of squeezed states corresponds
to motions of the disk. We demonstrate the utility of the representation by
solving some associated control problems.

The representation of squeezed states on the Poincaré was first explored
in [3], where it was used to visualize adiabatic crossing of a point where
infinitely many eigenvalues collide. In this paper we describe this corre-
spondence in more details. For the sake of completeness we reproduce some
results from [3] in the appendix.

2 Background

For clarity, let us cover some of the basic terms that will be used repeatedly
in this paper. The first subsection of the background will cover some terms
related to the quantumn mechanical aspect of the paper, and the second sub-
section will cover some basic concepts concerning the mathematical aspects
concerning Mébius transformations.

2.1 Squeezed Coherent States

Coherent states are a special type of quantum state of the quantum har-
monic oscillator in which said state closely mimics the classical behavior
of the harmonic oscillator. More formally, they are the states that are the
cigenvectors of the creation and annihilation operators.

The annihilation and creation operators are usually denoted as (&*, @)
(in this introduction section the hat refers to operators, but the rest of the
paper will suppress these hats for these operators) respectively. In Hilbert



spaces, i.e. complete metric space with said metric being induced by an inner
product, these two operators act on vectors in the Hilbert space H. Therce are
many systems in which there exist such raising and lowering operators, but
all (bosonic)! annihilation and creation operators must satisfy the following
properties; for a,a* € f: H —+ H

(1)

Such an operator is useful in that given another operator of interest N,
assuming that
[V, &] = ca (2)

for some scalar ¢ and given some eigenvector of N, N|n) = n|n},

Na|n) = (Na + [N, &])|n)
= én|n) + ca|N) (3)
= (n + c)a|n)
Creation operators have positive ¢, while annihilators have negative ¢
Furthermore, if IV is a Herinitian operator (which many operators of interest,
such as ohservables are), ¢ is real and thus the hermitian conjugate of & is

equal to a*, i.e.
[N, &%) = —cd” (4)

When the corresponding operator to the annihilation and creation oper-
ators is the Hamiltonian, the state with the property of

alyo) = 0 (5)

is labeled as the ground state.
From these commutation relations, we can prove that the ground state
is the minilnum uncertainty state.

Theorem 1 (Minimum uncertainty states). For creation and annihilation
operators &*,a obeying the commutation relations [6,4] = [d*,a*] = 0,
|a,a*] = 1, The ground state 1o} satisfying the relation &le} = 0, and
operators & = @+ a*,p = —1(a — a*), has a variance of T times variance of
p s equal to 1.

Proof.
oz = (z?) — (z)*
= (sholz?[¢b0) + {wolz|wo)?

!for fermions, replace the commutators with anti-commutators

(6)




but,

(olZ¥o)® = (ol(@ + a*}|sho)*
= ({(&")*%o|®o) + (Wol|ato))?

=02
&0,
o2 = (40|22 o)
= (Pol(&® + aa" + &*a + (&)%) |%o)
= 0+ (iho|@d*|o) + 0 +0
for 0'3,
o2 = (p%) — (p)*
= (Yolp®|%o) + (¥olplvo)?
but,
(Yolplpo)? = (ol (@ - a")Iepo)?
= (—{(&"Y"yolvo) + (tholibe))?
=0
50,
o2 = (Yo|p*|vo)
= (Yo| — (—&% — 46" + &"a + (&*)*) vho)
=0+ (yolad*|to) + 0+ 0
and

{olaa®|vo) = (yolla, &"] — a*alo)

= (vol1|v0)
=1

thus we see that
g20p = 1

{7)

(8)

(9)

(11)

(12)

(13)
|

As a specific example of annihilation and creation operators, consider the
quantum harmonic oscillator. in this system, the creation and annihilation

operators are defined as

(14)



Note that redimentionalizing this argument for say & being the position
operator and p being the momentum operator yiclds the familiar equation
0z0p = R/2, thus we see that the ground state is the minimal uncertainty
state.

Another specific example is in the Fock space. The Fock space is a
Hilbert space in which the states are representative of zero, one, two and so
on particles. Such states can be written as |0}, (1}, |2} .... The annihilation
and creation operators add and remove particles in such states respectively.
Formally, a Fock space F;(H) can be defined as

PSH"=CoHa(S"HRH)® (STHRHRH)®... (15)
n=0

where §* is the symmetrizing operator? and the overline represents closure.
We can write the Oth term in the sum as |0}, the first as |1), and so on, thus
any state in F.(H) can be written as

9) = a0l0) © ) ail) @ ) aisS* (19 ® [¥;)) @ ... (16)
i 4]

such that (y|¥) converges. As a shorthand, we write states that have n
particles (element of H®") as |nk,, Tiky, kg, - - - 1 Tk, ) Where 3 ng, =n. On
this space, we can define creation operators as

I
ak'|nk,,nk2,...,nki,...,nkm) = /ng, + Ung,, Rig, ok + 1,000 )

e H@(n+l)
(17
and annihlation operators as
&'k,'lnkl’nkza'--1nk,-:---1nkm)=Vnki|nklank2:--'ank,‘ 1:'~':nkm) 18
c H@(n—l)' ( )

The relation of ax, acting on a state where ny, is zero remains the same:
i, [Ty s Py - -5 i, = 0,00, ) = 0. (19)

We also see that the commutation relations of bosonic creation and an-
nihilation operators are preserved:

a;. 8% = 4;

[ t J] Y] (20)

@, a5) = [ai,a;) =0

2There is also the option for §* to be replaced with A*, the antisymmetrizing operator
for fermionic statistics.



From here we can define coherent states as eigenvectors of a,, ay, . For
a1 €(Z =2 0),

_|Q!2
|a> =73

oo an
> ==I0,0,...,7:,0,...) (21)
n=0 \/E
are coherent states in the fock basis.

Using eq. 21, we see that another way to write coherent states is by acting
on the ground state with operator D{a) called the displacement operator
where

D(a) = g™o8"o"¢, (22)

A squeezed coherent state is another quantum state in which the wave
function of the state has a standard deviation in one of the non-commuting
operator’s ground state below that of the ground state. In the case of the
quantum harmonic oscillator, an example of a squeezed coherent state is one
in which the standard deviation of x, Az, is less than that of the ground
state’s standard deviation in x, Axzy,. In return however, as the Heisenberg
uncertainty principle must be obeyed, the non-commuting variable momen-
tum (p)'s uncertainty must be greater than that of the ground state such
that A.‘Eu}“ Apl'in = h/2

The squeezed coherent state can be written as the coherent state in
eq. 22 acted upon by the squeeze operator S{£) where the squeeze operator
is defined by

$(¢) = exls7 @) (23)
Thus a squeezed coherent state ¢ = |, &) can be written as
a,€) = 5(€)D(a)|0) (24)
We are now ready to prove the following theorem.

Theorem 2. The state for any o, & € C, £ = re¥, |a,€) is a minimum
uncertainty state.

Proof. Using the property eABe=A = B+ [/1, B] + gly[fl, [A,B])] + ..., the
following equalities are true, all of which can be verified through calculation

D*(a)D(a) =1 (25)

D*(@)aD{e) =d+a

. . (26)
Die)aD*(a)=d -«

$*©)5) = 8(-8(©) =1 (27)



S5*(£)a8(€) = acoshr — a*e sinh r

. N . (28)
S(£)as*(£) = a* coshr — e~ sinhr
Let us write @ = A +4AB, A € R3.
Let us also call
C = —i|A, B (29)
and
F ={4, B} - 2(A)(B). (30)

Using £, C, we can rewrite the uncertainty relation as (AA)2(AB)? =
41 ((13‘}2 - (0)2).4 Applying this formula to &, we see

AA? = % (M(B) +2:(6))

AB? = L AL (31)
A

MG~ M{F)Y=0
Multiplying we see our familiar uncertainty relation

ARPAB? > 3—1 ((13“)2 + (0)2) (32)

2.2 Adiabatic Control

The adiabatic theorem is a fundamental concept in quantum mechanics that
describes the behavior of a quantum system under a slowly changing external
influence. It states that if a quantum system is subjected to a slow change
in its Hamiltonian, and if the initial state of the system remains in the
eigenstate of the Hamiltonian throughout this change, then the system will
remain in an instantanecus eigenstate of the Hamiltonian throughout the
process. The original statement as said by Max Born and Vladmir Fock is
as follows: “A physical system remains in its instantaneous eigenstate if a
given perturbation is acting on it slowly enough and if there is a gap between
the eigenvalue and the rest of the Hamiltonian’s spectrum”{6].

3This can be thought of breaking & into hermitian and anti-hermitian components. For
our usual operators §, #, the hermitian component is § and the antihermitian is %

4As a sanity check, our usual operators for position and momentum 4§, follow the
commutation relation [, 5] = #h = (AG)2(Af)° = % following our formula.



Theorem 3 (Adiabatic Theorem). Given a slowly changing hamiltonian
H(t) (H(t) = o(1)) with instantaneous eigenstates |n) and distinct energies
En(t) (BEa(t) # Ex(t) for n # m), the system evolves from the initial state

[9(0)) = ca(0)in(0))

to time ¢t

() = D enlt)In(®)).
The coefficients follow the formula
ea(t) = ca(0)eP et 4 o(1)
where the dynamical phase 0, is given by

ult) = —3 fo Ea(t)dt

and the geometric phase 7y, is given by
t
Yn = if (n(tHa())dt'.
0
Proof. Given the time dependent schrédinger equation

iRl (t)) = H(e)w(t)),
differentiate the left hand side to get

R|B(t)) = ihea(t)|n(2)) + iR D en(®)lR(2)).

Then applying (¢ (¢)| to both sides of eq. 38

ihem()|P(8)) = ihém(t) + R enl(t)(m(t)[A(2)} = cm(t) Em(t).

But we can rewrite
H(t)ln(t)) + HE)|n(t)) = En()In(t)) + En(t)|n(t)).
Also note for m # n

(m(t)in(t)) = - (g,(,f()tlf_(tg:((tt)»

Substituting into eq. 40 and rearranging constants we see,

im(t) + (%Em(t) + (m(t)lm(t») en®)= 3

n¥Em

Em(t) - En(t)

(O Oln(t)

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42)

—

43)



but since En(t) — En(t) # 0 and H(t) ~ 0, eq. 43 is on order o{1). {this
is called the adiabatic approximation)
Solving the differential equation

entt) =1 (250 b itm)(e) ) om) + o) (40
by integrating results in
em(t) = cn(0)e B8 4 o(1). (45)

2.3 Hyperbolic Geometry

This section® could start from the half plane representation of hyperbolic
geometry, but it seems that perhaps starting from an extrinsic definition,
similar to how spherical geometry is often introduced, could be more en-
lightening.

Thus, let us start with constructing an object with constant negative
curvature (the defining characteristic of hyperbolic geometry, in contrast to
positive curvature in spherical geometry). As S? is often defined as a surface
is embedded in 3 dimensions, we will do similarly here. We will also come to
see that it is impossible to preserve the negative curvature and fully immerse
the surface in R3%,

To define this surface, we must first discuss the object called the “trac-
trix”. The tractrix can be defined on a 2d planc by the parametrized path.
Starting at in the Cartesian plane, (R,0) € R?, following the differential

equation

dT‘ T =

£=_§,T=R3 R (46)
where r is the distance to the y axis, and ¢ is arc length along the tractrix.
Explicitly, the curve comes out to be

y = r arsech (%) - VR?~z? (47)

The pseudosphere is defined as the surface created by revolving a tractrix
about its asymptote, x = 0. See fig. la.

The gaussian curvature of the pscudosphere is a constant —"Elg. A geo-
metric proof of this statement is found in [12] chapter 6.3.

Note that lines in hyperbolic geometry should extend infinitely in any di-
rection, but the lines on the pseudospheres end along the and of the tractrix

51 will assume in this section that a basic knowledge of spherical geometry is understood
as it is perhaps the more common form of non-cuclidan geometry
SFor the full proof, see [9]
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o

A 0 1
{a) Graph of the tractrix (b} Image of pseudosphere gencrated by
revolving the tractrix along the asymp-
tote

Figure 1: visualizations of the pseudosphere

or they loop back on themself.” This suggests that the while the pseu-
dosphere has constant negative curvaturc, it is not am cmbedding of thw
entire hyperbolic plane. To understand the whole hyperbolic plane, we have
to map the whole plane somehow to R™. to do so, we will consider a con-
formal map of the pseudosphere onto R2, but the metric will no longer be
the euclidean one.

The Beltrami half-plane model (also known as the Poincaré half-planc
model) is a representation of the hyperbolic plane. The plane denoted H?
is given the metric of
_ dz? + dy?

o2
We will take our coordinates on the half plane to be the complex numbers.
To see how this model relates to the pseudosphere, the pseudosphere can be
conformally mapped to the region z € [0,27) and y > 1.

Now that we have a representation of the hyperbolic plane, let us examine
the geodesics on the half planc representation.

ds’ (48)

Theorem 4. The straight hyperbolic lines (h-lines) on H? are either vertical
lines, or half circles perpendicular to the x-azis.

"Intuitively, the pscudosphere has no more “space” to expand into past y=0. The
cuclidean metric in R* does not “expand” fast enough to embed the whole hyperbolic
plane.

11



Figure 2: visual proof of inversion across circles centered on z-axis preserving
distances

Proof sketch: The straight h-line connecting two points with the same z
coordinate must be a straight vertical euclidean line since any deviation in
the = means dz? is positive thus causing ds? to be larger.

To see the straight h-lines connecting two points that do not have the
same z coordinate lies on the circle perpendicular to the x-axis and intersects
the two points, we need to show that inversions across circles centered along
the z-axis sends h-lines to h-lines.

Consider any circle ¢ centered on the z-axis. Then consider any point z in
the half plane and its inversion across ¢. We want to show any ds emanating
off of the point z remains the same length after its inversion across ¢. Since
the inversion is anti-conformal, angles are preserved (up to a negative sign),
thus showing one dsg emanating off of z's distance is preserved implies all
ds emanating off of z has their distances preserved.

Consider figure. 2. the distance clement ds is perpendicular to the radius
of the circle starting at the point z. ‘The inversion of z and ds are 2’ and
ds’. Smaller ds makes the angle between the radius and ds’ approach a right
angle. We can also see that

ds'
dhs' = y—f == ? = dhs (49)
z z

where dy() is the hyperbolic length and d() is the euclidean length.

Now consider figure 3. The points along the purple arc ab reflect to the
points on the vertical line a’b’. Since the line 't is a h-line, the purple arc
must also be the line that minimizes distance between ab.

O

12
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Figure 3: visual proof of unique circular arc connccting a, b inverting to
straight line

Taking the upper half plane and applying the transformation &

iz+1

Hz) = z+1i

(50)

gives the half plane model. This transformation maps the z-axis to the unit
circle, and the entire half planc inside the unit disk.
The resulting metric in the Poincaré disk is d§

ds (51)

It is clear to see that the euclidean circle centered at the origin on the
Poincaré disk is also a hyperbolic circle {(h-circle). We will see later in the
Mgébius transform section that Mobius transformations preserve circles on
the Poincaré disk. Combined with the fact that Mobius transformations
that preserve the unit disk are isometries in the Poincaré disk (see {11]), we
see that euclidean circles are h-circles in the Poincaré disk, as well as in the
half plane model.

While euclidean circles are in fact h-circles as well, they do not share the
same center. The formula for the center of the h-circle given its euclidean
center is given by the formnula

z+1iy— z +iycoshp (52)

where p is the euclidean radius.

8This transformation is a Mébius transformation, discussed in section 2.4.
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The further down the euclidean circle is, the closer the hyperbolic center
is to the bottom edge of the circle. The limit where the hyperbolic center is
touching the circle happens at the x-axis. These objects in hyperbolic space
are called horocycles.

2.4 Maobius Transformations

We provide an overview of Mobius transformations, see, for example, [12].
A Mobius transformation is a mapping f : C — C of the form

az+ b

flz) = cz+d

for a,b,e,d e C.
All Mébius transformations of the above form can he written as a com-
position of 4 transformations.

z (53)

a
2324 -
C

Each one of these preserves circles {assuming straight lines are circles with
infinite radius}, thus the whole transformation preserves circles.
We write the matrix [f] associated with f as

a b
n=1¢ 3
The mapping f — [f] is a group homomorphism.

A non-identity Mobius transformation has two fixed points, counted with
multiplicity, given by

(0 d) & o= a7 + dbe f
€= > : (54)

We use the same letter as in Eq. (66) since the points €4 in Eq. (66) will be
fixed points of a specific Mébius transformation.

The discriminant in eq. 66 determines the number of fixed points, and
the type of Mébius transformation. Letting A = (a — d)? + 4bc, if A = 0,

the transformation is parabolic. If A < 0, the transformation is lozxodromic®.

?We will not be using this transformation further

14



Finally, if A = (, the transformation is either hyperbolic or elliptic. To
conceptually distinguish the difference between the final two cases, it is
easiest to break up the Mobius transformation.

Let M be any Mobius transformation. We will use a decomposition

M=S0ToS§!
with § given by
S = z-4- (55)
z2—&+
in the elliptic and hyperbolic cases, and
1
Si= 56
p— (56)
in the parabolic case. The transformation T is a rotation z — ¢z in the

elliptic case, a translation z — z + [ in the parabolic case, and a dilation
z ++ rz in the hyperbolic case for some non-zero f,r € R and § € C. The
compositions § o M =T o § give the normal form of M.

In this paper, we only consider Mébius transformations that preserve the
open unit disk D. This is the case if and only if the transformation takes
the form
_az+b
Cbz+a

for some a,b € C with |a| > {b|. There are three classes of such transforma-
tions: elliptic, parabolic, and hyperbolic. The positions of the fixed points
£4 determine the class. An automorphism of D is

M(z) (57)

i) elliptic if £_ # £, and only one fixed point is in D, in which case the
points are related by circle inversion, i.e. £, = 1/€_,

ii) parabolic if there is a single fixed point £_ = £, on the unit circle, and
iii) hyperbolic if £- # £, and both fixed points are on the unit circle.

Alternatively, we can also consider the transformation more geometri-
cally as

M =JoT oJ (58)

where )

J(z) =

+ 59
7—5 1 (59)
is inversion in the circle centered at g with radius R, with ¢ and R to be
specified, and 7" is a Euclidean similarity transformation specific to each
type of automorphism: i) In the elliptic case, T’ is a rotation; ii) In the
hyperbolic case T” is a translation; iii} In the parabolic case, T" is a dilation.

15



a) Sample paths in elliptic case (b) Samnple paths and inversions J of sain-
|
ple paths over the magenta circle

{¢) Sample paths in hyperbolic case  {d)} Sample hyperbolic cases and inver-
sions J of sample paths over the magenta
circle

N

{e) Sample paths in parabolic case ([} Sample parabolic cases and inversions
J of sample paths over the magenta circle

Figure 4: Decompositions of different hyperbolic motions; The reflections
J are described as reflections along the solid magenta circles. The dashed
rainbow lines in the first column represent different possible paths before
reflection J and the reflections of such paths are depicted as the thicker
dotted lines with the same respective color the second column.

16



Corresponding to this, we will sometimes call the case i) hyperbolic ro-
tation, ii) hyperbolic dilation and iii) hyperbolic translation.

In the elliptic case, J is inversion in the circle centered at the exterior
fixed point and orthogonal to the boundary. The transformation 7" is the
rotation

T'(z) = ze* (60)

for some s € R. Figures 4a, and 4b illustrate this process.
In the hyperbolic case, J is inversion in the circle of arbitrary radius
centered at the single fixed point £ = £, and T is the translation

T'(z) = z + isé. (61)

Figures 4c, and 4d illustrate this process.
In the parabolic case, J is inversion in the circle centered at £, passing
through £_, and T" is the dilation

T'(z) = s(z =€) + - (62)

Figures 4e, and 4f illustrate this process.

The invariant curves of elliptic, parabolic, and hyperbolic automorphisms
are hyperbolic circles, horocycles, and hypercycles respectively. These curves
arc Euclidean circles or circular arcs in D. In the Poincaré disk modcl, a
Euclidean circle corresponds to

i) a hyperbolic circle if it is contained within D,
ii) a horocycle if it is tangent to the unit circle,

iii) a hypercycle if it intersects the unit circle at two points at non-right
angles, and

iv) a hyperbolic line if it intersects the unit circle orthogonally.

3 Setup and results

We consider the family of quadratic Hamiltonians parameterized by w > 0
and o € C given by

H=wada+ %a2 + %a*2. (63)

The operators a,a* are irreducible representations of the canonical commu-
tation relation [a,a*] = 1. Our results will be independent of a choice of
representation. A squeezed state i is a state satisfying

(at+z2a")yp =0 (64)

17



for some z £ C. The state 1 exists if and only if |z| < 1, in which case it is
determined up to a phase by 2. In the Schrédinger representation, solutions
of the equation are multiples of

N
(]

=
-z 2

—

Plz) =e”

The solutions are indeed in L?(R) if and only if the condition |z| < 1 holds,
see [3].

We will use [¢(2)] to denote the complex line spanned by solutions of
Eq. (64) and by ¥(=2) or |16(z)} a vector in [¢(z)] of unit norm. The manifold

C:={[(2)], 1zl < 1}

of the complex projective space of H is formed by the set of all squeezed
states. The mapping

F:DC
2+ [9(2)]
associating a point in the open unit disk D © € with the squeezed state

[¥(z)] is one-to-one.
The disk D equipped with distance

is known as the Poincaré disk model of hyperbolic geometry. In particular,
the hyperbolic distance from a point z to the origin is

1+ |z
1-|2|"

d(0,2}) =In (65)

The Poincaré metric, the metric induced by dj, is

_ 1 2
gr = 4m|dz .

In Scction 2.4 we will discuss the Poincaré disk model in more detail. In
particular, we will introduce motions of the Poincaré disk and their invari-
ants: hyperbolic circles, horocycles and hypercycles.

Our main focus is on the pullback of dynamics generated by H on the
Poincaré disk. The qualitative properties of the dynamics depend on the
spectral propertics of the Hamiltonian in Eq. {63). There are three cases
that we express in terms of parameters w, .

i) The stable case: If w > |a|, then the Hamiltonian has the pure point
spectrum a=/\(n+ %) -5 (n=0,12,...).

18



ii) The free case: If w = ||, then the Hamiltonian has the absolutely
continuous spectrum o = [—w, 00).

iii) The unstable case: If w < |a|, then the spectrum is (—og, 00).
Let A = \/w? — |af?. The complex points

AL, (66)

¢

will play an important part in describing the dynamics of the evolution
U(t) = e *H generated by the Hamiltonian in Eq. (63). In the stable case,
£€_ € D represents the ground state of H and £; ¢ D. In the free and
unstable cascs, we have |4 = 1, where the points are degenerate in the free
case. We will show in Section 4 that the evolution U(t) leaves the manifold
of squeezed states C invariant. The pullback of U{¢) gives a motion M(t) of
the Poincaré disk. Explicitly,

M(t)z = F~H([U(t)9(2))) - (67)

We write z(t) = M(t)z. By the above, z{t) satisfies [U(t)y(2)] = [¢(2(t))].
We now describe the geomnetry of the motion.

Theorem 5. Let C = {z(t)|t € [~o0,00)}. Then
i) The stable case: C is a hyperbolic circle with center £_ (Fig. 5a).

it) The free case: C is a horocycle tangent to the unit circle at the point
5_ = §+ (F’lg. 5b).

iit) The unstable case: C is a hypercycle intersecting the unit circle at the
points €4 (Fig. 5c).

In cases i) and ii), the motion is clockwise, and in cuse iii) the trajectory
travels from £_ lo £4.

The proof of this theorem and more details about the motion are in
Section 4.

In Section 5, we will discuss several control problems. In particular,
we derive the set of states reachable by a sequence of pulses obtained by
switching n times between two quadratic Hamiltonians Hy, Hq.

Finally, in Appendix A we show that the manifold of squeczed states €
equipped with the Fubini-Study metric is a realization of hyperbolic geom-
etry.
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C &

3

(a) Stable case {b) Free casc {c) Unstable case

Figure 5: Trajectorics of z(t).

4 Motions of squeezed states

In this section, we prove Theorem 5. We start by showing that U{t)
e *H indeed preserves the unit disk and give an explicit formula for the
corresponding Mabius transformation M(t) in Eq. (67).

The evolution U(t) generated by the Hamiltonian (63) preserves the
linear space spanned by a,a*. Let a{t) = U*(t)al/{t) be the Heisenberg

evolution of a. Taking the time derivative and using [H,a] = —wa — aa®,
we get a system of equations
a(t) | _ . |-w =& |alt)
hwu]“[a w][wu)' (68)

The solution with a(0) = a and a*(0) = a* is a(t) = u(t)a + v(t)a*,
where u(t), v(t} are complex functions whose form will be discussed later.
This implies that for any complex function z(t),

U* ()a+2(0a")U(O(2) = (((t) + 2(po{®)a + (1) + 2@u{dl)a’ ) ¥(2)

We now pick the function z(t) so that the combination of a, a* on the right
hand side annihilates ¥(z), i.c.

w(t) + 2(t)ult)

u(t) + z(f)v(t)

and conclude that (a + z(t)}a*)U(t)i(z) = 0. Explicitly, we showed that

[Wt)b(2)] = ¥(2(8)),

with
NSO

zult) + u(t)
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Since U(t) is unitary, ¥(z(¢)) is in L*(R), so |z(t)| < 1 and the Mébius

transformation M(¢) : z — 2(t) preserves the Poincaré disk. We will also

check this explicitly after computing u(t), v(t).

_ The Hamiltonian evolution U(t) forms a group and hence the pullback
M(t) = F~1U(¢) is also a group, where

M(s)o M(t) = M(s+t), s,teR.

It follows that the fixed points of the Mobius transformations M(s) are
independent of s.
We now discuss the mapping M (¢} in each of the three cases.

4.1 The stable case

Let A = \/w? — |a|2. The solution of the system of equations (68) is
[a(t)] _aw=A) +8a° in [ -1 ] N a{w + A) + aa® _ix [ 1 ] .
a*(t) 2X wih 2X Aw
This implies that
a(eM — e M) 4 z((A — w)etM 4 (w + A)e M)
—az(eMt — e 4 ((A — wleTiM + (w + A)etrt)
The fixed points are then, ¢.f. Eq. (54),
wt A

S

Since there are two distinct fixed points £+ which are circle inversions of onc
another, the transformation M(t) is elliptic. We have the decomposition

2(t) = (SoToS M)z (69)

where S is given by Eq. (55) and T is the rotation z — e 2z  This
implies that C' = {z(f)|t € [~o0,00)} is a hyperbolic circle centered at &_,
with (€. ) being the ground state of H. The trajectory of z{t) makes a full
revolution in time 7 /.

z(t) =

4.2 The free case

The solution of the system of equations (68) gives

z(t) =

which has a single fixed point

—i@t — (1 — iwt)z
tatz — (1 + iwt)

£==.

&

This is a parabolic transformation and its decomposition (69) can be written

by taking S as defined in Eq. (55) and T to be the translation z » 2 — iat.
This shows that C' = {z(t})|t € [~o0,00)} is a horocycle touching the

unit circle at £.
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4.3 The unstable case
Let v = y/]a}? — w?. The solution of the system of equations (68) is

—ale™ — e ) + z({w + iv)er — (w —iy)e™)
az(e™ — e ) — ((w —im)et — (w +iy)e™™)

z(t) =

with fixed points
wt iy

Ei = R (70)

where 2(t) — £1 as t = +o0o. The fixed points lie on the unit circle so this
is a hyperbolic transformation whose decomposition (69) is given by taking
S as defined in Eq. (56) and T to be the dilation z — €27z,

This shows that C = {z(¢)|t € [—oc0,00)} is a hypercycle connecting £_
to §+‘

5 Applications to control theory

The questions we study are motivated by [13] that studied reachable set in
a similar control problem. Our methods allows us to give a full geometric
characterization of reachable sets in several control problems associated with
squeezed states.

5.1 Bang-bang control

We consider two quadratic Hamiltonians Hy, H; and the control sequence
given by

where cach opcrator S; acts over a time interval of length At;. Alternating
between the time evolution operators corresponding to Hy and H;, we have

S = e~ for 5 =2k +1,
’ e AL for § = 2k,

and ¢t = At; + Aty + --- + At,,. The operator Uy, is defined as the product
Up = 8 --- 828,

The control problem we consider involves evolving an initial squeezed
state [¢(zp)] into the target state [1)(zy)] for given zg and z; using bang-
bang control (71). We consider several cases of Hy, H).
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5.1.1 The stable case
We consider two stable Hamiltonians, i.e. w > |a],
Hy = wa*a,

* « 2 a *2

Hi=wa a+§a +§a )
where, for simplicity, we have chosen Hy to be the standard harmonic oscil-
lator. We are specifically interested in finding the minimum number of times
that we need to use the Hamiltonian H; in order to move the initial state
into the target state with complete freedom to pick At;. Taking n = 2k +1,
we want to find minimal n for which there exists a sequence Aty, ..., At,
that solves the control problem. The answer depends only on the modulus
of zp and zy. Let ¢ denote the fixed point in D associated with H,. We
define sequences Rop41, rok41 recursively as

(1 + |€*) Ro—1 + 2I¢

Ropyr = . Ry =z, 72
241 = Qe Ry + L 1ep) 0 ol (72)

and

(L+|EP)ran 1 —2IE] : 24|

, rop 1> S

Fager = 4 — 2K +H(LHER) BT | py =z (73)
0, otherwise.

Theorem 6. The control problem [¢(2f)] = [Uzr+1%(20)] has a solution if
and only if

rok+1 S |25| £ Ragr.

Proof. Using the mapping of squeezed states to the Poincaré disk, the prob-
lem is equivalent to the study of motions F~olJ; on the disk. By Theorem 5,
the trajectories F~! o Sy correspond to circles centered at the origin for odd
terms and hyperbolic circles with hyperbolic center £ for even terms. Thus
for each S5i41, there is some maximum and minimum |z|-value reachable
by that step, which we denote Rgr41 and rorq respectively, see Fig. 6.

The initial terms are given by R; = r; = |z0|. Subsequent terms are
computed as follows: Given a Euclidean circle of radius Rsi_;, the next
term Rogy4q is determined by the point on the circle with maximal hyperbolic
distance from £, which is p = —Rgx_1£/|€|. Let ¢ be the point antipodal to p
on the hyperbolic circle centered at £ passing through p. Then Roxyq = |g],
which can be computed by converting the hyperbolic distance d{0,q) =
d(0, £)+d(p, §) to Euclidean distance using Eq. (65). We obtain the recursion
Eq. (72).

For the minimal reachable radius, we get Eq. (73) using similar geometric
considerations as for the maximal radius. The recursion holds as long as the
the trajectory does not intersect with the hyperbolic circle centered at £
passing through the origin. Once these intersect, the origin is reachable so
the following term is zero. O
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Figure 6: Illustrations of how to reach the maximum radius (left) and min-
itnum radius (right).

Remark 1. The recurrence eguation for the mazimum radius, Eq. (72),
is a hyperbolic Mobius transformation Rory) = M{Ror_1) with an explicit
formula Rogyy = M°*R) and a corresponding matriz

_[r+1€P 2
[m‘[mﬂ IHW}

We can diagonalize [M] with
2
Uzi[l _11], D=[(1+I£I) 0 ]

v2 [l 0 (1- )y
Using [M] = UDU™! and [M°*] = UD*U~!, we have
. _(1+ AR +1-— A% A_1—|§|
T ATARR +1+A% T T 14

For large k, A% << 1 and we get an asymptotic formula

1 R2k+1~2(1-R1)A .

5.1.2 The free case
Consider the Hamiltonians Hy, H; given by

. (47 &
H; =wja e+ ?’az + Eta*z

where w; = |o;| and the fixed points are & = w;/o;. In order to describe the

set of reachable states, we use arc-polygons, i.e. polygons whose edges are

Euclidean circular ares.
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Figure 7: Set of reachable states (bluc) in the free case after applying Hy, H,.

Evolving some initial point 29 under Hy results in a trajectory along a
horocycle through &. Applying H; then extends the reachable set to an
arc-triangle (Fig. 7}. In all cases, we have that

e {p is a vertex with internal angle ,
e ) is a vertex with internal angle zerc, and
® the arc of the unit circle traversed clockwise from & to & is an edge.

The remaining vertex and edges are determined by the point where the horo-
cycle through z{0) and £ intersects with the horocycle through &; tangent
to it. If the intersection point can be reached by evolving 2(0) under Hp,
then the intersection point is the third vertex. Otherwise, the third vertex
is 2(0). The remaining two edges are given by horocycle arcs connecting
the third vertex to £, and &;. The entire open disk is reachable with the
sequence Hy, Hy, Hy.

5.1.3 The unstable case

For Hamiltonians Hy, Hy where w; < ||, the entire disk is reachable only
when pairs of fixed points do not overlap (Fig. 8a), in which case any point
in D can be reached with the sequence Hy, Hq, Hy. Otherwise, the final set
is given by some arc-polygon with vertices z(0), £3, and £L (Fig. 8b).

The sclection of Hp, f; that we present here does not encompass all
cases, but we hope it convinces the reader that the geometric map gives a
versatile method to think about control problems with squeezed states.
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{(a) Non-overlapping pairs of fixed points (b) Overlapping pairs of
fixed points

Figure 8: Set of reachable states (blue) in the unstable case after applying
Hy, Hy.

5.2 Adiabatic control

Provided w? > |ai?, the stable case, the Hamiltonian H = H(w,a) in
Eq.(63) has a discrete spectrum with ground state [1(£.)]. Recall that

w? — [af?

wt
& =

are the fixed points of the motion of the Poincaré disk generated by the
Hamiltonian.

We consider the family of Hamiltonians H{t) corresponding to parame-
ters w(t), a(t) that depend smoothly on ¢ € [0,1]. Let U.(t) be the unitary
generated by the slowly driven Schrédinger equation

Uty = HROU (@), U«0)=1.

We assume that the parameters satisfy the constraint w(t)® > |a(t)|?. The
ground state [(£_(t))] of H(t) is then protected by a gap, and a basic result
of adiabatic theory [6, 10] gives the limit

lim{U(e)(e(0))] = [$(E- (1))
For the motion M.(t}) = F~! o U.(t) on the Poincaré disk, this implies that
lim Mc(t)€-(0) = £-(2).

The idea of adiabatic control theory is to move the initial state [1#{£..(0))]
into the target state [¢(&_(t))] by slowly changing the corresponding Hamil-
tonian H(t). In the limit of infinitely slow driving, the motion traces the
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curve £_(t) on the disk. Our goal is to describe this curve geometrically
{Fig. 9).

Figure 9: For linear interpolation, the fixed point £ traces a hyperbolic
line.

We restrict our attention to a particular example. We fix w and pick
a(t) = (1 -ty +tog, a lincar interpolation between an initial value ap and
a final value o.

Theorem 7. For the linear interpolation described above, &_(t) traces a
hyperbolic line segment.

Proof. Recalling that £4(f) are circular inverses of each other, it suffices
to show that £4(t) lies on a circle, and orthogonality with the unit circle
follows. A rotation a — e*a rotates the corresponding fixed points as
£4() = e ¥4 (t). Since rotations preserve circles, we can without loss of
generality assume that af{t) is a line parallel with the real axis, i.e. has the
form

a(t) = (1 — t)ag + tay + ib.

Computing |£4(t) + iw/b|?, we get

2
wkw? —la@)? | dw|  w?

aft) D L

The right hand side is positive by the assumption that w? > |a|?, so £4(t)
indeed lies on a circle with center —iw/b and radius /(w?/62) — 1. O

A Geometry of squeezed states

We will use an alternative formula for the hyperbolic distance,

|z — wf?

dp(z, w) = arcosh(1 + 28(z, w)), d(z,w) = TS

(74)
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We recall the Poincaré metric, the metric induced by dj,

1
=4————|dz|*.
an (1 — Izlz)zl Zl
The projective space of H has a natural Fubini-Study metric induced by
the Hilbert-Schmidt distance

I1P—QJ* =4er((P — Q)?)

between rank one projections P and ¢. The factor of 4 is a convenient
normalization. The sub-manifold of squeezed states C inherits the Fubini-
Study metric
grs = 4tr(dP(2)dP(z)),
where P(z) = |¢(2)){(1(z)| are projections on [(z)]. Again, the factor of 4
is non-standard normalization that fits our problem.
These two manifolds are congruent.

Theorem 8. The map F is an isometric immersion of (D, gn) into (C, grs).
In particular, the manifold of squeezed states is a model of hyperbolic geom-
etry.

This theorem is not new, sce ¢.g. [3]. For completeness we include the

proof. We follow [3] with only small changes.
We compute the Hilbert-Schmidt distance of squeezed states.

Lemma 9. For any z,w € D, we have
tr {(P(2) = P(w))?) = 2(1 - (1 + 8(z, w))"1).

Proof. In the proof we will use the standard Fock basis |n} obtained from
0} := ¥(0), and by the recursive relation a*|n} = /n + 1jn + 1). We claim
that

¥(z) = (1 - 2)39(z), Bz) = e 3 (0). (75)
Indced, using
a4 za®,
we check that )

{a+ za")i(z) = 0.

To compute the normalization, we expand #(z) in a Taylor series,

1,5(2):2( ;) :;\/(Qn)lﬂn}.
n=0 ’

Then _
— 1 {(zw)"

n 12
= 4n nl

@n)! = (1 - zw)"3,

(@(2)|(w)) =
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and using this for z = w shows (75). To compute the Hilbert-Schmidt
distance we use

tr ((P{z) — P(w))z) =2 - 2tr(P(z) P(w)),
and
r(P(2)P(w)) = (b)) = (1 - [2") (1~ [w*) 21 - 2wl
The expression in the lemma then follows from the identity
|1 - zwf? = jz — w® + (1 = |2[))(1 — |w]),
and the definition of 8(z, w). O
Taylor expansion implies that
tr ((P(2) — P(w))?) = 8(z,w) + o(8(z, w)).

Comparing this with the hyperbolic distance, we get

tr ((P(2) — P(w))?) = %dh(z, w)? + o(b(z, w)).

This implies that g, = grs as claimed in the theorem.
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