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Abstract

We review symplectic and contact geometries and discuss their
applications in classical mechanics. We then consider the problem of
maximizing entropy subject to constraints to derive the Boltzmann
distribution. This leads to a geometric approach to thermodynamics.
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1 Introduction

Symplectic geometry concerns the study of manifolds equipped with a closed
non-degenerate 2-form. It is a powerful tool in classical mechanics as it
provides a geometric description of the classical phase space. We will show
that by incorporating time into the phase space, we can describe a classical
system using ideas from contact geometry [2].

Geometric approaches to thermodynamics have been a subject of interest
since Gibbs’ formulation of thermodynamics. In particular, the fundamental
thermodynamic relation can be described by assigning a 1-form, known as
a contact form, to the thermodynamic state space [3, 4]. A natural ques-
tion is whether the geometries of classical mechanics and thermodynamics
are related. We will partly answer this question by showing that one can
adapt the notion of entropy on a measure space to a notion of entropy on
a symplectic manifold. Using the Lagrange multiplier method, we can then
derive the Boltzmann distribution as a probability density on the symplectic
manifold.

We will begin by providing some fundamental results in symplectic ge-
ometry and contact geometry and their applications to classical mechanics
in Section 2 and Section 3. Along the way, we will discuss Noether’s theorem
in the context of both symplectic manifolds and contact manifolds. Section 4
will present a derivation of the Boltzmann distribution from a classical sys-
tem and discuss its connection to the thermodynamic state space.

2 Symplectic geometry

2.1 Dynamics on symplectic manifolds

Definition 2.1. Let M be a 2n-dimensional manifold. A symplectic form
on M is a closed 2-form ω such that the induced map ω̃ : TM → T ∗M
defined by ω̃(v) = ω(v, ·) is invertible [7].

Example 2.2. Let N be an n-dimensional manifold. The cotangent bun-
dle T ∗N is a symplectic manifold with the canonical symplectic form ω := dλ
where λ is the Liouville 1-form. The Liouville 1-form is defined at each cov-
ector p ∈ T ∗N by λp := π∗p where π : T ∗N → N is the projection map. In
local coordinates (xi) on N , the Liouville 1-form at each point p = (x, pi dx

i)
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(Einstein summation convention is used here and throughout) is given by

λ = pi dx
i ,

where dxi = π∗ dxi are 1-forms on T ∗N . The canonical symplectic form is
then given by

ω = dλ = dpi ∧ dxi.

It is clear that ω is closed by virtue of being exact, and ω̃ is invertible because
for all Ai dx

i +Bi dpi we have

ω

(
−Bi ∂

∂xi
+ Ai

∂

∂pi
, ·
)

= Ai dx
i +Bi dpi .

The condition that ω̃ is invertible is also called non-degeneracy of ω.
Below are several equivalent characterizations of non-degeneracy, with the
proof of equivalence found in [7].

Proposition 2.3. Let V be a 2n-dimensional vector space with n ≥ 1 and
ω ∈ V ∗∧V ∗ be an antisymmetric bilinear form. The following are equivalent:

1. The induced map ω̃ : V → V ∗ defined by ω̃(v) = ω(v, ·) is invertible.

2. ωn := ω∧n ̸= 0.

3. There exists a basis (α1, . . . , αn, β
1, . . . , βn) of V ∗ such that ω = αi∧βi.

The second characterization establishes that symplectic manifolds are ori-
entable and ωn serves as a volume form/measure. This fact will come into
play when we discuss thermodynamics in Section 4.2. For now, the most
important characterization for us is the first one. The following proposition
is essentially a direct consequence of the first characterization (see [7]).

Proposition 2.4. Let (M,ω) be a symplectic manifold. Then, for all 1-
forms α ∈ Ω1(M), there exists a unique vector field X such that ιXω = α
where ιX is the interior product defined by ιXω := ω(X, ·).

Definition 2.5. Let (M,ω) be a symplectic manifold. A Hamiltonian vector
field associated to a smooth function H ∈ C∞(M) is the unique vector
field XH such that

ιXH
ω = − dH.
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Example 2.6. Let M = T ∗N be the cotangent bundle of a manifold N .
Let (xi) be local coordinates on N and (pi) be the dual coordinates on T ∗

xN
at each point x ∈ N . The Hamiltonian vector field associated to a smooth
function H ∈ C∞(T ∗N) is given by

XH =
∂H

∂pi

∂

∂xi
− ∂H

∂xi

∂

∂pi
.

An integral curve of XH is a path ϕ(t) = (x(t), p(t)) on T ∗N that satisfies

ẋi =
∂H

∂pi
and ṗi = −∂H

∂xi
, (1)

which are Hamilton’s equations.

Symplectic geometry allows us to easily see that conserved quantities
generate symmetries. We will first present a pair of lemmas.

Lemma 2.7 (Cartan’s magic formula). Let X be a vector field and α be
an n-form on a manifold, then,

LXα = ιX dα + dιXα.

Proof. See [7].

Lemma 2.8. Let (M,ω) be a symplectic manifold and H ∈ C∞(M) be a
smooth function, then XH is a symplectic vector field, meaning that

LXH
ω = 0.

Proof. Since dω = 0, we have by Cartan’s magic formula

LXH
ω = d(ιXH

ω) = d(− dH) = 0.

Proposition 2.9. Let (M,ω) be a symplectic manifold and H ∈ C∞(M) be
a smooth function. If Q is a conserved quantity in the sense that XHQ = 0
(i.e., it stays constant along the flow of XH), then XQ is a symmetry of the
system in the sense that XQ is symplectic and XQH = 0.
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Proof. By the previous lemma, we know that XQ is symplectic, so that
LXQ

ω = 0. Direct computation gives

XQH = ιXQ
dH = −ιXQ

ιXH
ω = ιXH

ιXQ
ω = −ιXH

dQ = −XHQ . (2)

Remark 2.10. The quantity in Eq. (2) is called the Poisson bracket of Q
and H, and it is denoted by {Q,H}. We have just proved that this bracket
is antisymmetric. In fact, it also satisfies the Jacobi identity which implies
that (C∞(M), {·, ·}) is a Lie algebra (see [7]).

2.2 Noether’s theorem on symplectic manifolds

In the previous section, we saw that conserved quantities generate symme-
tries. Noether’s theorem establishes the converse relationship.

We will first outline Noether’s theorem in a more general setting and then
apply it to symplectic manifolds. Given a functional integral S[ϕ], called the
action integral, assume that taking arbitrary variation δϕ (not necessarily
with compact support or with fixed boundaries) gives

δS[ϕ] =

∫ [
Ei[ϕ] δϕ

i +
d

dt

(
Pi[ϕ] δϕ

i
)]

dt, (3)

for some functionals Ei and Pi. When considering compactly supported
variations that vanish at the boundary, the second term vanishes, leaving us
with

δS =

∫
Ei[ϕ] δϕ

i dt.

By the fundamental lemma of the calculus of variations, δS[ϕ, δϕ] = 0 for all
compactly supported variations that vanish at the boundary δϕ if and only
if Ei[ϕ] = 0. We call the equations Ei[ϕ] = 0 the equations of motion, and
we say that the solutions to the equations are the dynamics generated by the
action. A symmetry of the system is a variation R such that δS[ϕ,R] = 0
for all ϕ. However, for simplicity, we will only consider symmetries R that
make the integrand in Eq. (3) vanish for all ϕ, that is

Ei[ϕ]R
i +

d

dt

(
Pi[ϕ]R

i
)
= 0.
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When this happens, we see that along any solution ϕ̄ to the equations of
motion, Pi[ϕ̄]R

i is a conserved quantity. This underlies Noether’s theorem,
relating continuous symmetries to conserved quantities.

Now, let us apply Noether’s theorem to a symplectic manifold (M,ω).
For simplicity, we will assume that ω is exact, meaning ω = dλ for some
1-form λ. In principle, Noether’s theorem is local. Since all closed form
are locally exact, this is not a particularly restrictive assumption. We will
demonstrate that the Hamiltonian flow can be described by minimizing the
action functional

S[ϕ] :=

∫
(λ(ϕ̇)−H) dt.

Taking an arbitrary variation δϕ, we compute in local coordinates∫
δ(λiϕ̇

i) dt =

∫ (
δϕj ∂λi

∂xj
ϕ̇i + λi δϕ̇

i

)
dt

=

∫ (
δϕj ∂λi

∂xj
ϕ̇i − ϕ̇j ∂λi

∂xj
δϕi

)
dt+

∫
d

dt

(
λi δϕ

i
)
dt

=

∫
ω(δϕ, ϕ̇) dt+

∫
d

dt
(λ(δϕ)) dt

(4)

and ∫
δH dt =

∫
dH(δϕ) dt.

Combining these, we have

δS[ϕ] =

∫ (
ω(δϕ, ϕ̇)− dH(δϕ)

)
dt+

∫
d

dt
(λ(δϕ)) dt.

We can read off the equations of motion

ω(·, ϕ̇) = dH ⇐⇒ ϕ̇ = XH ,

which are Hamilton’s equations as in Eq. (1).
A symmetry of this system is a variation R such that

ω(R, ϕ̇)− dH(R) +
d

dt
(λ(R)) = 0. (5)

Observe that

ω(R, ϕ̇) = ιϕ̇ιR dλ and
d

dt
(λ(R)) = ιϕ̇ d(ιRλ).
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By Cartan’s magic formula, Eq. (5) simplifies to

(LRλ)(ϕ̇)− dH(R) = 0.

To make this vanish for all ϕ, we must have1

LRλ = 0 and LRH = dH(R) = 0.

When R is such a variation, Noether’s theorem states that λ(R) is a conserved
quantity.

3 Contact geometry

3.1 Dynamics on contact manifolds

Definition 3.1. Let M be a 2n + 1-dimensional manifold. A contact form
on M is a 1-form α such that dα is non-degenerate on kerα. This means
that the map Φ : kerα → (kerα)∗ defined by Φ(v) = dα(v, ·) is invertible [7].

Remark 3.2. It is tempting to call the pair (M,α) a contact manifold,
but conventionally, a contact manifold refers to odd dimensional manifolds
equipped with a non-integrable hyperplane distribution and can be character-
ized as conformal classes of local contact forms. Since such contact manifolds
do not come up in our discussion, we will avoid the terminology of contact
manifold entirely. A manifold with a contact form is termed a strict contact
manifold.

Example 3.3. Consider R2n+1 as a manifold with coordinates (xi, pi, t).
Suppose it is equipped with a 1-form α = H(x, p, t) dt − pi dx

i where H ∈
C∞(R2n+1), then the kernel of α is spanned by

pi
∂

∂t
+H

∂

∂xi
and

∂

∂pi
.

For A = Ai
(
pi

∂
∂t
+H ∂

∂xi

)
+ Ãi

∂
∂pi

and B = Bi
(
pi

∂
∂t
+H ∂

∂xi

)
+ B̃i

∂
∂pi

, we can
compute that

dα(A,B) =

(
H − pi

∂H

∂pi

)
(−ÃiB

i + AiB̃i).

1Note that ϕ can be reparameterized, so it is similar to saying ax + b = 0 for all x
implies a = b = 0.
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Therefore, linear algebra tells us that dα is a contact form if and only if
H − pi

∂H
∂pi

is nowhere vanishing. In the case of H = 1, the contact form

α = dt− pi dx
i is known as the standard contact form.

Proposition 3.4. Let α be a contact form on a manifold M of dimen-
sion 2n + 1. Then at each point x ∈ M , the map Φ : TxM → T ∗

xM defined
by Φ(v) = dα(v, ·) has 1-dimensional kernel.

Proof. By the definition of a contact form, we know that Φ|kerα is injective
and hence has rank at least 2n. It follows that the rank of Φ is exactly 2n
due to the fact that the determinant of any (2n+1)× (2n+1) antisymmetric
matrix is zero. Therefore, the kernel of Φ has dimension 1.

The above proposition leads to the existence and uniqueness of the so-
called Reeb vector field. The Reeb vector field plays a crucial role in gener-
ating the dynamics on contact manifolds.

Definition 3.5. Let α be a contact form on a 2n-dimensional manifold M .
The Reeb vector field associated to α is the unique vector field R such that

ιR dα = 0 and α(R) = 1.

Example 3.6. On R2n+1 with coordinates (xi, pi, t) and contact form α =
H(x, p, t) dt− pi dx

i, the kernel of dα is spanned by

R̃ =
∂

∂t
+

∂H

∂pi

∂

∂xi
− ∂H

∂xi

∂

∂pi
.

An integral curve of R̃ is a path ϕ(τ) = (x(τ), p(τ), t(τ)) such that

ṫ = 1, ẋi =
∂H

∂pi
, ṗi = −∂H

∂xi
,

which again are the Hamilton’s equations. By working with time as a co-
ordinate, we can rescale R̃ to get different parameterizations of the same
integral curve. The Reeb vector field, for example, will generate the same
curve because it is given by

R =

(
H − pi

∂H

∂pi

)−1

R̃.
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3.2 Noether’s theorem on contact manifolds

On a manifold M with a contact form α, we will demonstrate that Reeb
dynamics can be described by minimizing the action functional

S[ϕ] :=

∫
ϕ

α =

∫
α(ϕ; ϕ̇) dτ,

where ϕ̇ = dϕ
dτ
. Taking the variation amounts to a computation similar to

that in Eq. (4), and we have

δS[ϕ] =

∫
dα(δϕ, ϕ̇) dτ +

∫
d

dτ
(λ(δϕ)) dτ.

The equation of motion is
dα(·, ϕ̇) = 0,

which is determined by Reeb dynamics. Again by a similar computation, a
symmetry of the system is a variation A such that

LAα = 0.

In which case, α(A) is a conserved quantity. We can go even further and
consider A such that LAα = dβ is exact and not necessarily zero, then we
claim that α(A)− β is a conserved quantity. Using Cartan’s magic formula,
we have

0 = LAα− dβ = d(ιAα− β) + ιA dα

which implies that

LR(α(A)− β) = ιR(LAα− dβ)− ιRιA dα = 0.

3.3 Comments on odd symplectic manifolds

An interesting property of a contact form α is that α ∧ (dα)n is a volume
form. However, for many classical mechanics applications, all we need is the
dynamics determined by the kernel of dα. This suggests that we can consider
a more general structure called an odd symplectic manifold.

Definition 3.7. Let M be a 2n+1-dimensional manifold. An odd symplectic
form on M is a closed 2-form ω such that ω has maximal rank (i.e., 2n).
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Remark 3.8. Sometimes an odd symplectic manifold is defined to have an
odd symplectic form and a nowhere vanishing volume form with suitable
conditions [5].

An easy consequence of Definition 3.7 is that every contact form α induces
an odd symplectic form dα, however we can have odd symplectic forms that
are not induced by contact forms. In particular, this allows us to relax the
condition thatH−pi

∂H
∂pi

is nowhere vanishing which appeared in Example 3.3
In this contact or odd symplectic formulation of classical mechanics, time

is combined with the other coordinates (position and momentum). While
Reeb dynamics still provides a classical “causal structure”—where every
point in the future and past of a point lies strictly on an integral cruve
of the Reeb vector field—there is no longer a canonical choice of spacetime
(and momentum) coordinates. In contrast, while the symplectic formulation
allows different choices of space and momentum coordinates, time is treated
as a universal parameter. Contact or odd symplectic formulation provides
us with additional flexibility in choice of space, momentum, and time coor-
dinates. However, on a case by case basis, it also prompts the question of
how can we generalize certain ideas that arise in the symplectic formulation
and perhaps even depend on a universal time parameter. For instance, in the
subsequent section, we are going to investigate the passage from symplectic
manifolds to thermodynamics, and we will leave as an open question how to
incorporate contact and odd symplectic formulation of classical mechanics.

4 Thermodynamics

4.1 Entropy

On a measure space (X,µ), a probability density ρ is a nonnegative function
such that

∫
X
ρ µ = 1. If X is finite and µ is the counting measure, then the

Shannon entropy of ρ is defined to be

S[ρ] := −
∑
x∈X

ρ(x) log ρ(x),

where log is the natural logarithm (though different base can be used and
would behave similarly). Many axiomatic characterization theorems of Shan-
non entropy are available in the literature, see [1] and references therein.
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The challenge of generalizing to a continuous space is that some of the
axioms for Shannon entropy become hard to formulate. The entropy for
a continuous probability density, usually considered in thermodynamics, is
called the differential entropy and defined as

S[ρ] := −
∫
X

ρ log ρ dµ.

If X has finite measure, then the differential entropy shares some properties
with the Shannon entropy such as being maximized by the uniform distribu-
tion.

Proposition 4.1. Suppose (X,µ) is a measure space with finite measure.
Then the differential entropy S[ρ] is maximized by the uniform distribution
ρ = 1/µ(X).

Proof. This is a minimization problem subject to the constraint
∫
X
ρ dµ = 1.

We can solve this using Lagrange multipliers. Let

L[ρ, α] := −
∫
X

ρ log ρ dµ+ α

(∫
X

ρ dµ− 1

)
,

then the variations of L are

δL = −
∫
X

(log ρ+ 1 + α)δρ dµ and
∂L

∂α
=

∫
X

ρ dµ− 1.

Setting both to zero, we have

log ρ+ 1 + α = 0 and

∫
X

ρ dµ = 1.

Hence, the solution is

ρ =
exp(−1− α)∫

X
exp(−1− a) dµ

=
1

µ(X)
.

A potential issue with differential entropy is that if the measure µ is
dimensionful, then probability density ρ would have the inverse dimension of
the measure, which calls into question the meaning of log ρ. Mathematically,
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this corresponds to the fact that under linear scaling of the measure µ′ = λµ,
the uniform distribution will become ρ′ = ρ/λ, and the entropy will transform
like the logarithm of probability density:

S ′[ρ′] = S[ρ] + log λ.

If X has finite measure, then we can always normalize the measure to be
dimensionless. Alternatively, we would have to introduce some constant of
nature (like Planck’s constant ℏ) to make the measure dimensionless. Due
to the relative nature of measurement, a particularly natural solution is to
introduce relative entropy between two probability densities ρ and σ, which
is defined to be

S[ρ | σ] := −
∫
X

ρ log
ρ

σ
dµ.

In general, suppose there is an algebra A acting on the space of probability
densities. If the density σ is such that for every other probability density ρ,
there exists a unique element a ∈ A such that ρ = aσ, then the entropy
relative to σ can be defined to be

S[ρ | σ] := −
∫
X

(log a)ρ dµ

assuming that log a is suitably defined in A (for example, as the inverse
of the exponential map defined by the Taylor series). In our example, the
algebra can be taken to be the set of functions on X acting by multiplication
and σ can be any positive function. This description can be taken further to
describe entropy in for example quantum field theory [9].

4.2 Boltzmann distribution

Let (M,ω) be a symplectic manifold of dimension 2n. Let Hi ∈ C∞(M) be
a family of smooth functions indexed by i ∈ Λ. If {Hi, Hj} = 0 for all i, j,
then we say that the family (Hi) is a commuting system of observables. As
an example, we can take H0 = 1 and H1 = H where H is any smooth
function, which we regard as a Hamiltonian. If in addition, P ∈ C∞(M) is a
conserved quantity (i.e., {H,P} = 0), then we can let H2 = P , and we have
a commuting system of observables (H0, H1, H2) as another example. Now,
using the nowhere vanishing volume form ωn as a measure, the differential
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entropy of a nonnegative smooth function ρ ∈ C∞(M) is

S[ρ] = −
∫
M

ρ log ρωn.

Let us now consider the question, given a commuting system of observ-
ables (Hi) and real numbers (Ui) indexed again by i ∈ Λ, what function ρ
maximizes the entropy S[ρ] subject to the constraints∫

M

ρHi ω
n = Ui for all i.

This is again a constrained optimization problem, which can be solved using
Lagrange multipliers. Let βi be the Lagrange multipliers associated to the
constraints. Then, consider

L[ρ, β] := −
∫
M

ρ log ρωn +
∑
i∈Λ

βi

(∫
M

ρHi ω
n − Ui

)
.

We can compute variations of L

δL = −
∫
M

(
log ρ+ 1 +

∑
i∈Λ

βiHi

)
δρ ωn

∂L
∂βi

=

∫
M

ρHi ω
n − Ui .

Thus, the solution to the constrained optimization problem is given by

ρ = exp

(
−1−

∑
i∈Λ

βiHi

)
,

where βi are determined by the constraints∫
M

ρHi ω
n = Ui for all i.

Example 4.2. We consider the ideal gas of N particles of mass m in a box of
volume V . Imposing periodic boundary conditions, we can regard the space
as a torus T3 with volume form d3x such that∫

T3

d3x = V.
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Let M = T ∗(T3)N ∼= R3N × T3N be the cotangent bundle of (T3)N equipped
with the ideal gas Hamiltonian

H =
3N∑
i=1

p2i
2m

=:
|p|2

2m
.

Considering the commuting system of observables (1, H), we find the Boltz-
mann distribution

ρ = exp(−1− α− βH) =
exp(−βH)

Z
, (6)

where (α, β) are the Lagrange multipliers corresponding to (1, H), while Z :=
exp(1 + α). The Lagrange multipliers are subject to the constraints∫

M

ρω3N = 1 and

∫
M

ρH ω3N = U.

The first constraint tells us that

Z =

∫
M

ρω3N = V N

(∫
R
exp(−βp2/2m) dp

)3N

= V N

(
2πm

β

)3N/2

.

Plugging this back into Eq. (6), we obtain the Maxwell-Boltzmann distribu-
tion [8] expressed as a distribution on the phase space2 M ,

ρ =
1

V n

(
β

2πm

)3N/2

e−β|p|2/2m .

The second constraint will allow us to relate the inverse temperature β and

2The Maxwell-Boltzmann distribution, or the Maxwell distribution, is usually expressed
as a velocity distribution. Our distribution is equivalent upon integrating out space direc-
tions.
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the internal energy U . We have

U =
V N

2mZ

∫
R3N

exp(−β|p|2/2m)|p|2 d3Np

=
V N

2mZ

2π3N/2

Γ(3N/2)

∫ ∞

0

e−βp2/2mp3N+1 dp

=
V N

2mZ

π3N/2

Γ(3N/2)

(
2m

β

)3N/2+1

Γ

(
3N

2
+ 1

)
=

3N

2

1

β
.

This is the well-known relation between the temperature and the internal
energy of an ideal gas.

4.3 Thermodynamic system

A thermodynamic state is said to be an equilibrium state if it maximizes the
entropy. The Boltzmann distribution from the previous section is an example
of an equilibrium state. Evolution of a thermodynamic system along a path
of equilibrium states is known as a quasi-static process . This is physically
interesting because it corresponds well to real systems and mathematically
interesting because of its simplicity. For example, if we assume that a clas-
sical density distribution is always in the Boltzmann distribution, then the
entropy and the Lagrange multipliers βi can be expressed as functions of the
constraints Ui. We can obtain the βi as functions of Ui by solving∫

M

ρHi ω
n = Ui for all i, (7)

where ρ is the Boltzmann distribution. The entropy is then directly given by

S =

∫
M

ρ

(
1 +

∑
i∈Λ

βiHi

)
ωn

= 1 +
∑
i∈Λ

βiUi .
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Example 4.3. Continuing with the ideal gas example, we have

S = βH + logZ

=
3N

2
+N log

(
V

(
4πmU

3N

)3/2
)
.

Note that we have been treating the ideal gas particles as distinguishable. If
we were to treat them as indistinguishable, we would have to consider the
phase space to be a quotient of M by particle exchange. The calculation
will be almost identical, but now the Boltzmann distribution becomes N ! ρ,
which leads to the entropy

Sidentical = S − logN ! .

Using Stirling’s approximation logN ! ∼ N logN −N for large N , we have

Sidentical ∼
5N

2
+N log

(
V

N

(
4πmU

3N

)3/2
)
.

This is the Sackur-Tetrode equation [8].

Definition 4.4. A thermodynamic system is the data of a n-dimensional
manifold U equipped with a smooth real-valued “thermodynamic potential”
function S : U → R.

Given a thermodynamic system (U , S) and coordinate variables (Ui) on U ,
we can define conjugate variables (βi) by

βi :=
∂S

∂Ui

.

The optimization problem imposes that the conjugate variables βi will coin-
cide with the Lagrange multipliers satisfying Eq. (7), justifying the reuse of
the symbol βi. However, in a general thermodynamic system, βi need not
stem from Lagrange multipliers. For example, in the ideal gas example, we
can consider S = S(U, V,N) as a function of U, V,N .

Sometimes we would like to parameterize the thermodynamic system by
the βi instead of the Ui or even an admixture of them. For this reason,
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we embed our thermodynamic system into a bigger space ϕ : U → T with
coordinates (S, Ui, βi) via the map

ϕ : (Ui) 7→
(
S(Ui), Ui,

∂S

∂Ui

)
.

Equipping T with a contact form α = dS −
∑

i βi dUi, we have ϕ∗α = 0.
In the context of contact geometry, this means that ϕ(U) is a Legendrian
submanifold of T . For further development of thermodynamics in the context
of contact geometry, see [3, 6].

Remark 4.5. In a physics context, the Ui are often taken to be extensive
variables, which are additive under the union of two systems. In the ideal gas
example, the energy U , the volume V , the particle number N are extensive
variables. The conjugate variables βi are then called the intensive variables.
The physical roles of the intensive variables can be illustrated by considering
two thermodynamic systems S1(U1,i) and S2(U2,i). Assuming that U1,i +U2,i

are conserved, then it can be shown through optimization that the total
entropy S1(U1,i) + S2(U2,i) is maximized when

β1,i =
∂S1

∂U1,i

=
∂S2

∂U2,i

= β2,i.

The intensive variables characterize whether two systems are in equilibrium
with each other, and they reflect the zeroth law of thermodynamics, which
states that equilibrium between thermodynamic systems is an equivalence
relation3. Some examples of intensive variables are temperature, pressure,
and chemical potential.

4.4 Open questions

One immediate question is whether the differential entropy or the relative
entropy can be characterized by a set of axioms. An alternative phrasing
of this question is what physical principles underly the definition of entropy
that a thermodynamic system seeks to maximize. Another direction is to
unify the origin of the thermodynamic variables. In the ideal gas example,

3This means that if two systems are in equilibrium with a third system, then they are
in equilibrium with each other.
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the energy U , the volume V , and the particle number N are seemingly dis-
parate quantities in the classical system, and yet they ended up being on
the same footing in the thermodynamic system. Along this line, we can
ask whether the variables conjugate to volume and particle number—which
are related to the pressure and the chemical potential—can be derived using
Lagrange multipliers and thus lead to a better geometric understanding of
thermodynamics.
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