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Abstract

A Sum and Product Game is a logic puzzle first mentioned in a 1979 Gardner column. In

this paper, we explore this game’s properties and behaviors by modeling it as a pseudorandom

bipartite graph and analyzing its structural properties. Moreover, we analyze the distribution

of some specific substructures such as diamonds and fishes. Particularly, we discover the game’s

potential halting conditions, the strict upper bounds of the scatter plot of diamond patterns

and the condition when diamonds become fishes. Overall, these works give some ideas for

further research of our ultimate conjecture, that there exists an upper bound such that any

Sum and Product Game either ends with a finite length lower than this bound or never halts.
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1 Introduction

1.1 The Game Rule

A Sum and Product Game is a logic puzzle quoted from a 1979 Gardener column www.math.

uni-bielefeld.de/~sillke/PUZZLES/logic_sum_product. In this game, Bob chooses two arbi-

trary integers greater than 2 and not greater than N, which are called the chosen answer numbers.

Then Bob tells the sum of the two chosen numbers to Sara secretly and tells the product of the

two chosen numbers to Peter secretly. Sara and Peter are trying to figure out what the two chosen

are. The order does not matter. They can talk to each other but only with words “I know what

the numbers are.” or “I have no way to figure them out yet.” honestly.

Example 1.1. For example, with N = 10, Bob picks 8 and 2. Then Bob tells Sara the sum 10 and

tells Peter the product 16. Here is their conversation:

Peter: “I have no way to figure them out yet.”

Sara: “I have no way to figure them out yet.”

Peter: “I have no way to figure them out yet.”

Sara: “I have no way to figure them out yet.”

Peter: “I know what the numbers are.”

Sara: “I know what the numbers are.”

In this thesis, we are going to analyze this logic game and try to explore an open question:

Conjecture 1.1. For arbitrary upper bound N for choosing the two numbers, is there some positive

K such that the game never halts if and only if the length of the conversation is greater than K.

1.2 How it works

Let’s discuss what exactly Sara and Peter are communicating and what they are thinking about in

such a restricted conversation. In the begining, Peter has the product 16, so he knows the answer

must be one of the two pairs (8, 2), (4, 4), and Sara’s number can be 8 or 10. Then Peter cannot

figure out which is the one they desire and has to tell Sara “I have no way to figure them out yet.”.
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For Sara, the answer must be among (8, 2), (7, 3), (6, 4), (5, 5), and Peter’s number can be 16, 21, 24

or 25. Since Peter did not figure out the answer at the beginning, Peter’s numbers cannot be those

that can be uniquely decomposed into the product of two integers greater than 2, that is 21 and

25, so (7, 3) and (5, 5) can be crossed out from Sara’s list, but she still doesn’t know which of (8, 2)

or (6, 4) it is, so she has to tell Peter “I have no way to figure them out yet.”.

Next, Peter knows that Sara’s elimination is not done yet, and that Sara’s list has at least two

possible answers. If Sara’s number is 10, then her possible answer list is (8, 2), (6, 4), which we

discussed above. If Sara’s number is 8, then her possible answer list is (6, 2), (4, 4), and (5, 3) is

crossed out. Since Peter still can’t use the available information to get an answer from (8, 2) and

(4, 4), he can only state that “I have no way to figure them out yet.”...

As the length of conversation grows, the complexity of what they are thinking will be too

complex to follow, so we better find a way to analyze the game globally.

2 Pseudorandom graph induced by a Sum and Product Game

Before discussing the game, let’s make some conventions for convenience. Let’s use A and B to

denote the two numbers that Bob has chosen and suppose A ≥ B without loss of generality. Thus,

an SPG (Sum and Product Game) can be uniquely determined by the three initial settings N,A,B.

In fact, even if A and B are not known in advance, once we know both Sara’s and Peter’s

numbers, then we can uniquely determine A and B by solving the equation system S = A + B,

P = AB, that is A = S+
√
S2−4P
2 , B = S−

√
S2−4P
2 .

Therefore, we can analyze this game by generating a bipartite graph instead of the complicated

verbal analysis as in the previous section.

Definition 2.1. For n ≥ 2, a graph induced by the Sum and Product Game with upper bound n

is a bipartite graph Gn := (Sn, Pn,En) where
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Sn := {Ss : ∃a, b ∈ {2..n}. a+ b = s}

Pn := {Pp : ∃a, b ∈ {2..n}. ab = p}

En := {(Ss,Pp) : ∃a, b ∈ {2..n}. a+ b = s ∧ ab = p}

Let E(G) denote the set of edges and S(G) and P(G) the two sets of the vertices for a bipartite

graph G. A bipartite graph (S, P,E ) can be simply regard as a graph (S ∪ P,E ).

Example 2.1. If N = 10, then the graph G10 is like:

Whenever Peter states “I have no way to figure them out yet.”, he is telling Sara that the

information he currently have corresponds to multiple combinations of A and B. In the graph this

is equivalent to saying that the possible product node is connected to more than one edge, so we

can exclude all leaf product nodes from the graph. Otherwise, if Peter’s number is from the leaves,

he should state “I know what the numbers are.” since the possible answer for him is unique, that

is, the only edge connect to his product node. For Sara, in the current eliminated graph, if her sum

node is adjacent to only one leaf product node, then she can determine the answer; otherwise, only

Peter can get the answer. The analysis is similar for Sara.

To demonstrate how Sara and Peter eliminate options step by step as they exchange information,
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we introduce the following definitions:

Definition 2.2. Given G = (S, P,E ), let the set of leaf vertices

LS(G) := {s ∈ S : deg(s) ≤ 1}

LP(G) := {p ∈ P : deg(p) ≤ 1}

LV(G) := LS(G) ∪ LP(G)

Definition 2.3. Given G = (S, P,E ), let the set of leaf edges

LE(G) := {(u, v) ∈ E : u ∈ LV(G) ∨ v ∈ LV(G)}

Definition 2.4. Given G = (S, P,E ), let the pruned graph prun(G) := (S′, P ′,E ′) where

S′ := S\LS(G)

P ′ := P\LP(G)

E ′ := E ∩ (S′ × P ′)

Definition 2.5. A pruning process of a graph G is a descending sequence of graphs

prun0(G) ⊇ prun(G) ⊇ prun2(G) ⊇ prun3(G) ⊇ . . .

where prun0(G) := G and prunn+1(G) := prun(prunn(G)).

If n is even, note that LS(prunn(G)) = ∅ so prunn+1(G) only removes product nodes compared

to prunn(G); if n is odd, LP (prunn(G)) = ∅ so prunn+1(G) only removes sum nodes compared to

prunn(G).
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Example 2.2. The pruning process of G10 is like:

prun0(G) =

prun1(G) =

prun2(G) =

prun3(G) =
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prun4(G) =

prun5(G) =

prun6(G) =

prun7(G) =

Note that prunn(G) = prun7(G) for n ≥ 7. We say prun7(G) is a fixpoint of prun.

8



Definition 2.6. Given a graph G = (V,E), V ′ ⊆ V the induced subgraph is given by

G[V ′] := (V ′, E ∩ (V ′ × V ′))

Definition 2.7. Given a graph G = (V,E), the 2-core of G is K2(G) := G[K2(V )] where

K2(V ) :=
⋃

{V ′ ⊆ V : ∀v ∈ V ′.degG[V ′](v) ≥ 2}

It is saying, the 2-core of G is the maximal subgraph of G with no leaves.

Definition 2.8. A filtering sequence of graph G is a sequence of set

LE(prun0(G)),LE(prun1(G)),LE(prun2(G)), . . .

Let LEn(G) := LE(prunn(G)).

property 2.1. LEn(G) = prunn(G)\prunn+1(G) for n ≥ 0

Intuitively, the filtering sequence is like cabbage leaves that are plucked off until nothing to

prune and the 2-core of G remains.

property 2.2. LEi(G) ∩ LEj(G) = ∅ for i > j ≥ 0

property 2.3. E(G) =
⊔∞

i=0 LEi(G) ⊔K2(E(G))

Thus, we classify each edge with respect to their “survival time” in the pruning process.

Definition 2.9. Given a graph G = (V,E), the lifetime is a function lifeG : E → N ∪ {∞} with

lifeG(v) :=


n, if v ∈ LEn(G)

∞, if v ∈ K2(E)

Consider completing a sentence as a turn, and let the number of turns it takes to start the game

until someone says the first “I know...” be the length of the game.
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Definition 2.10. Denote the length of a Sum and Product Game with initial setting N,A,B by

len(N,A,B).

Theorem 2.4. len(N,A,B) = lifeGN
((S(A+B),PAB)) + 1

Example 2.3. From example 1.1, len(10, 8, 2) = 5.

In fact, there are four possible outcomes from the pruning process:

1. Peter and Sara can never determine A and B even after any rounds.

2. Peter is able to determine A and B, but Sara cannot, and the game ends.

3. Sara is able to determine A and B but Peter cannot, and the game ends.

4. Sara and Peter are both able to determine A and B.

Theorem 2.5. Given the initial setting N,A,B, let s = A + B and p = AB, the results can be

determined by following process:

n := lifeGn
(Ss,Pp);

if (Ss,Pp) ∈ K2(EN ) then
return OutCome 1

else
if 2 | n then

if |{p̃ ∈ Pn : (Ss,Pp̃) ∈ LEn(Gn)}| = 1 then
return OutCome 4

else
return OutCome 2

end

else
if |{s̃ ∈ Sn : (Ss̃,Pp) ∈ LEn(Gn)}| = 1 then

return OutCome 4
else

return OutCome 3
end

end

end

Example 2.4. Suppose N,A,B = 10, 6, 5, the game never ends as (S11,P30) ∈ K2(E10), so

len(10, 6, 5) = lifeG10((S11,P30)) = ∞
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Example 2.5. Suppose N,A,B = 10, 7, 7, Peter can immediately get the answer, but Sara cannot

determine the answer since she has three different possible options forA,B, that is (7, 7), (9, 5), (8, 6).

Example 2.6. Suppose N,A,B = 15, 12, 10, Sara can get the answer in turn 2, but Peter cannot

determine the answer since he has two different possible options for A,B, that is (12, 10), (15, 8).

Example 2.7. Suppose N,A,B = 10, 8, 2, the game ends at turn 5.

Definition 2.11. For α ∈ 1
2N≥0, for A ≥ 2 + α with A− α ∈ Z, let E(A,α) := (S2A,P(A2 − α2))

3 Pattern diagram and substructure

The graph generated by the Sum and Product Game grows chaotically as N increases. In order

to study some features of parts of the graphs. We can abstract the some patterns out and discuss

them individually.

Definition 3.1. A pattern diagram is a bipartite graph (S, P,E ).

Definition 3.2. Given a pattern diagramD, a D-indexed substructure bounded by n is an injective

map σ : D ↪→ Gn. Denote the set of D-indexed substructure bounded by n as GD
n .

4 Diamond substructure

Definition 4.1. A diamond shape is a bipartite graph ♢ := (S♢, P♢,E♢) where S♢ := {Ss1,Ss2},

P♢ := {Pp1,Pp2}, E♢ := {(Ss1,Pp1), (Ss1,Pp2), (Ss2,Pp1), (Ss2,Pp2)}

11



Definition 4.2. A diamond substructure is a ♢-indexed substructure .

Theorem 4.1. Given N,A,B, α1, α2, β1, β2 ∈ N with the following condtion:

1. 4 ≤ B < A ≤ 2N

2. 1 ≤ α1, α2, β1, β2 ≤ A− 2

3. α2 < α1 and β2 < β1

4. A,α1, α2 have the same parity

5. B, β1, β2 have the same parity

, then A2 − α2
1 = B2 − β2

1 and A2 − α2
2 = B2 − β2

2 if and only if there exists a diamond sub-

structure ♢(A,α1, α2;B, β1, β2) := (S, P,E ) where S := {SA,SB}, P := {PA2−α2
1

4 ,P
A2−α2

2

4 },

E := {E(A2 ,
α1

2 ), E(A2 ,
α2

2 ), E(B2 ,
β1

2 ), E(B2 ,
β2

2 )}

SA

P(
A2

4
− α2

1

4
) = P(

B2

4
− β2

1

4
) P(

A2

4
− α2

2

4
) = P(

B2

4
− β2

2

4
)

SB

A

2
±
α1

2

A

2
±
α2

2

B

2
±
β1

2

B

2
±
β2

2

When we say ”given a valid diamond ♢(A,α1, α2;B, β1, β2)”, we are actually saying ”given

N,A,B, α1, α2, β1, β2 ∈ N satisfying the condition of theorem 4.1”.

Example 4.1. ♢(24, 16, 12; 21, 11, 3) is a diamond substructure.

Example 4.2. ♢(17, 13, 11; 13, 7, 1) is a diamond substructure.

property 4.2. Given a valid ♢(A,α1, α2;B, β1, β2), then A,α1, α2 have the same parity, and

B, β1, β2 have the same parity, but A and B may have different parities.

Proof. If A and α1 have different parities, then
A
2 +

α1

2 /∈ N which is contradictory to the assumption.

Similarly, we can check other cases with (A,α2), (B, β1), (B, β2). Example 4.1 gives the case where

A,B have different parities.
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Theorem 4.3. Given a valid ♢(A,α1, α2;B, β1, β2), then A2 −B2 = α2
1 − β2

1 = α2
2 − β2

2

Proof. Rearrange the equation A2−α2
1 = B2−β2

1 to A2−B2 = α2
1−β2

1 , and rearrange the equation

A2 − α2
2 = B2 − β2

2 to α2
1 − β2

1 = A2 −B2 = α2
2 − β2

2 . Then

5 Boundary condition

Theorem 5.1. Given N ≥ 2. For A,B,C,D ∈ {2..N} with A ≥ B and e ≥ 0, if AB = CD and

C +D + e = A+B, then A+B ≤ 2A+ e− 2
√
eA.

Proof. We know

(2A− (C +D))2 − 4eA

= 4A2 − 4A(C +D) + (C +D)2 − 4((A+B)− (C +D))A

= 4A2 − 4A(C +D) + (C +D)2 − 4A2 − 4AB + 4A(C +D)

= (C +D)2 − 4AB

= (C +D)2 − 4CD

= (C −D)2 ≥ 0

By rearranging the inequality, it follows that A+B ≤ 2A+ e− 2
√
eA.

6 Distribution of Diamonds

We note that if a game cannot be stopped, it means that the edge corresponding to the setting

of that game is on a loop. Now, let us start our discussion with the simplest loop, the diamond

substructure.

As shown below, this is a scatterplot of all the diamonds contained in GN where the orange,

yellow, green, and blue scatters are for cases N = 100, 150, 200, 250, respectively. The horizontal

coordinates of each point in the graph indicate smaller sum nodes and the vertical coordinates

indicate larger sum nodes, so there should be no points below the y = x line. Note that a point

can correspond to several different diamonds, since product nodes can be different.
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Figure 6.1: x = A, y = B

In addition to y = x, this scatter appears to be bounded by two different curves, where the

curve on the left is independent of N , while the curves on the right shift upwards as N increases.

a

b c d

e f g

h

Theorem 6.1. For a, b, c, d, e, f, g, h ∈ N+, if it satisfies all the following

condition:

1. 2 ≤ abdf − cegh− acdg + befh < abdf + cegh+ abce+ dfgh ≤ N

2.
∣∣ b d
g e

∣∣ · ∣∣ a f
h c

∣∣ ̸= 0

then there exists a diamond substructure ♢( 12 (abdf+cegh), 1
2 (abce+dfgh), 1

2 (acdg+befh); 1
2 (abdf−

cegh), 1
2 (abce− dfgh), 1

2 (acdg − befh))

Proof. We can arrange a, b, c, d, e, f, g as grid points. By property 4.3, we know (A+B)(A−B) =

(α1 + β1)(α1 − β1) = (α2 + β2)(α2 − β2). Let A = 1
2 (abdf + cegh), α1 = 1

2 (abce + dfgh), α2 =

1
2 (acdg + befh), B = 1

2 (abdf − cegh), β1 = 1
2 (abce− dfgh), β2 = 1

2 (acdg − befh). Since cegh > 0,
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we know A ̸= B. To prove the product nodes are different, by theorem 4.1, it suffices to show that

α1 ̸= α2, i.e. abce+ dfgh ̸= acdg + befh, which can be rearranged as (be− dg)(ac− fh) ̸= 0

Corollary 6.2. For u1, u2, v1, v2 ∈ N+, if it satisfies all the following condition:

1. 2 ≤ u1(u2 − v2)− v1(u2 + v2) < (u2 + v1)(u1 + v2) ≤ N

2. u1 ̸= u2 and v1 ̸= v2

then there exists a diamond substructure ♢(A,α1, α2;B, β1, β2) where A = 1
2 (u1u2 + v1v2), B =

1
2 (u1u2−v1v2), α1 = 1

2 (u1v1+u2v2), α2 = 1
2 (u2v1+u1v2), β1 = 1

2 (u1v1−u2v2), β2 = 1
2 (u2v1−u2v1),

1

u1 v1 u2

1 1 1

v2

Consider the extreme case u = u1 = u2, v = v1 = v2. Then, a diamond

substructure is given by ♢(A,α1, α2;B, β1, β2) where A = 1
2 (u

2 + v2), B =

1
2 (u

2 − v2), α1 = uv, α2 = uv, β1 = 0, β2 = 0. It follows that u =
√
A+B

and v =
√
A−B.

Theorem 6.3. Given game upper bound N , let σ : G♢
N → R2,

σ(♢(A,α1, α2;B, β1, β2)) := (A+B,A−B), then the scatter plot of the point

set σ(G♢
N ) is bounded above by the curve y = (−

√
x+ 2

√
N)2

Proof. We know A
2 + α1

2 is the greatest answer number appearing in ♢(A,α1, α2;B, β1, β2) which

is chosen from the range {2..N}; therefore, we have A
2 + α1

2 ≤ N , implying 2N ≥ A + α1 =

1
2 (u

2+ v2)+uv = 1
2 (u+ v)2 ≥ 1

2 (
√
A+B+

√
A−B)2, implying

√
A−B ≤ −

√
A+B+2

√
N .

Theorem 6.4. Given game upper bound N , let σ : G♢
N → R2, σ(♢(A,α1, α2;B, β1, β2)) := (A +

B,A−B), then the scatter plot of the point set σ(G♢
N ) is bounded above by y = (

√
x+ ϵ)2 for some

real ϵ ≥ 0.

Proof. Similarly, we know u−v must be not smaller than some constant ϵ ≥ 0; otherwise, it follows

B = 0 out of range. Thus, ϵ ≤ u− v =
√
A+B −

√
A−B implies

√
A−B ≤

√
A+B − ϵ.

The following scatterplot Figure 6.2 transforms the coordinates of Figure 6.1, changing from

x = B, y = A to x = A + B, y = A − B. The curves y = (−
√
x + 2

√
N)2 and y = (

√
x + ϵ)2 are

also shown.
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In fact, within the bound N ≤ 500, the diamond with the minimal
√
A+B−

√
A−B is the one

in Example 4.2, so we know ϵ ≤
√
30− 2. In addition, Figure 6.3 below shows a scatterplot derived

by squaring the coordinates of Figure 6.2, transforming x = A + B, y = A − B into x =
√
A+B,

y =
√
A−B. This transformation linearize the bounding curves to y = −x+ 2

√
N and y = x+ ϵ.

Conjecture 6.1. ϵ =
√
30− 2

Figure 6.2: x = A+B, y = A−B
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Figure 6.3: x =
√
A+B, y =

√
A−B

7 Fishes

Definition 7.1. A fish shape is a bipartite graph Fish := (SFish, PFish,EFish) where

SFish := {Ss1,Ss2,Ss3,Ss4}, PFish := {Pp1,Pp2,Pp3},

EFish := {(Ss1,Pp1), (Ss1,Pp2), (Ss2,Pp1), (Ss2,Pp2), (Ss1,Pp3), (Ss3,Pp3), (Ss4,Pp3)}

Theorem 7.1. Given game upper bound N and a valid diamond ♢(A,α1, α2;B, β1, β2), if it satisfies

all the following condition:

1. α1, α2 ∈ {4..2N}\{B}

2. Each of the pairs (A,B), (α1, β1), (α2, β2) has the same parity

3. A−B,α1 − β1, α2 − β2 ≥ 4

then there exists a substructure like the diagram shown below:
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Sα1 P(A
2

4 − α2
1

4 ) = P(B
2

4 − β2
1

4 )

PA2−B2

4 SA SB

Sα2 P(A
2

4 − α2
2

4 ) = P(B
2

4 − β2
2

4 )

α1
2 ± β1

2 A
2 ±α1

2
B
2 ± β1

2

A
2 ±B

2

α2
2 ± β2

2
A
2 ±α2

2
B
2 ± β2

2

Proof. By given conditions, we know Sα1,Sα2 ∈ SN . As A,B have the same parity, it is the

case A + B and A − B are even, implying A2−B2

4 are integers. As A + B ≥ A − B ≥ 4, we

know A2−B2

4 ≥ 4, so PA2−B2

4 ∈ PN . As A
2 − B

2 ,
α1

2 − β1

2 , α2

2 − β2

2 ≥ 2, by theorem 4.3, we have

A2−B2

4 =
α2

1−β2
1

4 =
α2

2−β2
2

4 , implying E(A2 ,
B
2 ), E(α1

2 , β1

2 ), E(α2

2 , β2

2 ) ∈ EN .

The following theorems show two basic ways that two diamonds can stick together to form some

interesting fish structures.

Theorem 7.2. Given game upper bound N and valid diamonds ♢(A,α1, α2;B, β1, β2), ♢(A,α2, α3;B, β2, β3),

if it satisfies all the following condition:

1. α1, α2, α3 ∈ {4..2N}\{B}

2. Each of the pairs (A,B), (α1, β1), (α2, β2), (α3, β3) has the same parity

3. A−B,α1 − β1, α2 − β2, α3 − β3 ≥ 4

then there exists a substructure like the diagram shown below:

Sα1 P(A
2

4 − α2
1

4 ) P(B
2

4 − β2
1

4 )

Sα2 PA2−B2

4 SA P(A
2

4 − α2
2

4 ) P(B
2

4 − β2
2

4 ) SB

Sα3 P(A
2

4 − α2
3

4 ) P(B
2

4 − β2
3

4 )

α1
2 ± β1

2 A
2 ±α1

2
B
2 ± β1

2

α2
2 ± β2

2
A
2 ±B

2
A
2 ±α2

2
B
2 ± β2

2

α2
2 ± β3

2
A
2 ±α3

2
B
2 ± β3

2

Proof. Combining the theorem 7.1 and theorem 4.3 with ♢(A,α1, α2;B, β1, β2) and ♢(A,α2, α3;B, β2, β3),

we have A2−B2

4 =
α2

1−β2
1

4 =
α2

2−β2
2

4 =
α2

3−β2
3

4 , so E(A2 ,
B
2 ), E(α1

2 , β1

2 ), E(α2

2 , β2

2 ), E(α3

2 , β3

2 ) ∈ EN .
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Theorem 7.3. Given game upper bound N and valid diamonds ♢(A,α1, α2;B, β1, β2), ♢(B,α1, α2;C, γ1, γ2),

if it satisfies all the following condition:

1. α1, α2 ∈ {4..2N}\{B,C}

2. Each of the triples (A,B,C), (α1, β1, γ1), (α2, β2, γ2) has the same parity

3. A−B,B − C,α1 − β1, α2 − β2, β1 − γ1, β2 − γ2 ≥ 4

then there exists a substructure like the diagram shown below:
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Proof. Note that A − C = (A − B) + (B − C) ≥ 8 > 4. Similarly, we have α1 − γ1, α2 − γ2 > 4

Apply theorem 7.1 to ♢(A,α1, α2;B, β1, β2), ♢(B,α1, α2;C, β1, β2) and ♢(A,α1, α2;C, β1, β2), then

it gives the desired substructure.

8 Appendix

Here is the code to plot the graph induced by a Sum and Product Game, stat some data of diamond

substructures and sketch the scatterplot of diamond substructures as in the figures.

1 import math

2 import re

3

4 import numpy as np

5 import networkx as nx

6 from itertools import combinations_with_replacement , combinations , chain

7 import matplotlib.pyplot as plt
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8 from typing import *

9 from time import time

10 from sklearn.linear_model import LogisticRegression

11 from scipy.optimize import curve_fit

12

13

14 def timing(f):

15 def timing_f (*args , ** kwargs):

16 start_time = time()

17 result = f(*args , ** kwargs)

18 print("--- %s seconds ---" % (time() - start_time))

19 return result

20

21 return timing_f

22

23

24 class SPG:

25 def __init__(self , graph: nx.Graph , edge_labels: dict):

26 self.graph: nx.Graph = graph

27 self.edge_labels: dict = edge_labels

28 self.colors = [’pink’ if node.startswith(’S’) else ’lightblue ’ for node in

self.graph]

29

30 @staticmethod

31 def by_max(maximum: int , highlights_cond=None):

32 graph = nx.Graph()

33 edge_labels = {}

34 for i, j in combinations_with_replacement(range(2, maximum + 1), 2):

35 edge = (f’S{i + j}’, f’P{i * j}’)

36 edge_labels[edge] = f’{i}:{j}’

37 graph.add_edge (*edge , _=(i, j))

38 G = SPG(graph , edge_labels)

39 if highlights_cond is not None:

40 for index , node in enumerate(G.graph):

41 if highlights_cond(node):
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42 G.colors[index] = ’blue’ if re.match(r’P(\d*)’, node) is not

None else ’red’

43 return G

44

45 def copy(self) -> ’SPG’:

46 return SPG(self.graph.copy(), self.edge_labels.copy())

47

48 def plot(self , num: int = 1, figsize: Tuple[int , int] = (6, 6), options: Dict =

None):

49 if options is None:

50 options = {}

51 current_options = {

52 ’node_color ’: self.colors ,

53 ’node_size ’: 600,

54 ’font_size ’: 10,

55 ’width’: .8,

56 ’with_labels ’: True ,

57 }

58 current_options.update(options)

59 plt.figure(num , figsize)

60 pos = nx.nx_agraph.graphviz_layout(self.graph)

61 nx.draw(self.graph , pos , ** current_options)

62 nx.draw_networkx_edge_labels(self.graph , pos , edge_labels=self.edge_labels)

63

64 def leaves(self) -> List:

65 return [i for i in self.graph if self.graph.degree(i) <= 1]

66

67 def rot(self) -> List:

68 self.graph.remove_nodes_from(res := self.leaves ())

69 self.colors = [’pink’ if node.startswith(’S’) else ’lightblue ’ for node in

self.graph]

70 self.edge_labels = dict ([(key , self.edge_labels[key]) for key in self.

edge_labels.keys() if

71 key [0] not in res and key[1] not in res])

72 print(self.edge_labels)

21



73 return res

74

75 def succ(self) -> ’SPG’:

76 ret = self.graph.copy()

77 ret.remove_nodes_from(self.leaves ())

78 return SPG(ret , self.edge_labels)

79

80 def game_life(self) -> int:

81 count = 0

82 g = self.copy()

83 while g.rot():

84 count += 1

85 return count

86

87

88 def SPG_stats(maximum: int , modes =()) -> List:

89 G = SPG.by_max(maximum)

90 initial_G = G.copy()

91 last_leaves = []

92 dropped_nodes = iter (())

93 life_count = 0

94 while True:

95 G.graph.remove_nodes_from(last_leaves)

96 if leaves := G.leaves ():

97 last_leaves = leaves

98 else:

99 res = []

100 if ’game_life ’ in modes:

101 res.append(life_count)

102 if ’last_leaves ’ in modes:

103 res.append(last_leaves)

104 if ’chains ’ in modes:

105 chains = initial_G.copy()

106 chains.graph.remove_nodes_from(G.graph)

107 res.append(chains)
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108 if ’initial_graph ’ in modes:

109 res.append(initial_G)

110 if ’terminal_graph ’ in modes:

111 res.append(G)

112 return res

113 life_count += 1

114

115

116 def longest_chain(maximum: int) -> SPG:

117 last_leaves , chains = SPG_stats(maximum , (’last_leaves ’, ’chains ’))

118 nodes = nx.node_connected_component(chains.graph , last_leaves [0])

119 chains.graph.remove_nodes_from ([n for n in chains.graph if n not in nodes])

120 return chains

121

122

123 def n_step_chains(maximum: int , step_upper: int , step_lower: int = 1) -> SPG:

124 G = SPG.by_max(maximum)

125 subgraph_nodes = set()

126 for s_node in G.graph:

127 if (s_re := re.match(r’S(\d*)’, s_node)) is not None and (s_node_val := int(

s_re.group (1))):

128 p_nodes = G.graph.neighbors(s_node)

129 p_exist = False

130 for p_node_0 , p_node_1 in combinations(p_nodes , 2):

131 diff = abs(int(re.match(r’P(\d*)’, p_node_0).group (1)) - int(re.

match(r’P(\d*)’, p_node_1).group (1)))

132 print(diff)

133 if step_upper >= diff >= step_lower:

134 subgraph_nodes.add(p_node_0)

135 subgraph_nodes.add(p_node_1)

136 p_exist = True

137 if p_exist:

138 subgraph_nodes.add(s_node)

139

140 return SPG(G.graph.subgraph(subgraph_nodes), {})
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141

142

143 def strict_n_step_chains(maximum: int , step_upper: int , step_lower: int = 1) -> SPG:

144 G = SPG.by_max(maximum)

145 subgraph_nodes = set()

146 for s_node in G.graph:

147 if (s_re := re.match(r’S(\d*)’, s_node)) is not None and (s_node_val := int(

s_re.group (1))):

148 p_nodes = G.graph.neighbors(s_node)

149

150 p_node_vals = [int(re.match(r’P(\d*)’, p).group (1)) for p in p_nodes]

151 if (diff := abs(max(p_node_vals) - min(p_node_vals))) <= step_upper and

diff >= step_lower:

152 subgraph_nodes.add(s_node)

153 subgraph_nodes.update(G.graph.neighbors(s_node))

154

155 return SPG(G.graph.subgraph(subgraph_nodes), {})

156

157

158 def deg_n_prod_nodes(maximum: int , deg: int , sum_lower_bound: int):

159 G = SPG.by_max(maximum)

160 counter = 0

161 subgraph_edges = set()

162 for node in G.graph:

163 if G.graph.degree(node) == deg and re.match(r’P(\d*)’, node) is not None:

164 for neighbor in G.graph.neighbors(node):

165 if neighbor < sum_lower_bound:

166 break

167 else:

168 counter += 1

169 for edge in G.graph.edges(node):

170 subgraph_edges.add(edge)

171 return counter , SPG(G.graph.edge_subgraph(subgraph_edges), {})

172

173
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174 def deg_n_highlight(maximum: int , deg: int):

175 G = SPG.by_max(maximum)

176 for index , node in enumerate(G.graph):

177 if G.graph.degree(node) == deg:

178 G.colors[index] = ’blue’ if re.match(r’P(\d*)’, node) is not None else ’

red’

179 return G

180

181

182 def embed_graph(maximum: int , maximum_sub: int):

183 G = SPG.by_max(maximum)

184 G_sub = SPG.by_max(maximum_sub)

185 for index , node in enumerate(G.graph):

186 if node not in G_sub.graph:

187 G.colors[index] = ’blue’ if re.match(r’P(\d*)’, node) is not None else ’

red’

188 return G

189

190

191 def unlooped_lifetime(node: str):

192 maximum = 4

193 while True:

194 g = SPG.by_max(maximum)

195 while res := g.rot():

196 if node in res:

197 return maximum

198 maximum += 1

199

200

201 def substructrue_diamond(maximum: int , sum_lower_bound: int):

202 G = SPG.by_max(maximum)

203 diamond_nodes = set()

204 diamond_leading_nodes = set()

205 diamonds = []

206 for index , node in enumerate(G.graph):
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207 if node not in diamond_leading_nodes and (sum_matched := re.match(r’S(\d*)’,

node)):

208 diamond_leading_nodes.add(node)

209 if int(sum_matched [1]) >= sum_lower_bound:

210 for neighbor1 , neighbor2 in combinations(G.graph.neighbors(node), 2)

:

211 for nn in G.graph.neighbors(neighbor1):

212 if nn not in diamond_leading_nodes and nn in G.graph.

neighbors(neighbor2) \

213 and int(re.match(r’S(\d*)’, nn)[1]) >=

sum_lower_bound:

214 diamond_nodes.update ([node , nn, neighbor1 , neighbor2 ])

215 diamonds.append ([node , nn, neighbor1 , neighbor2 ])

216 return diamonds , diamond_nodes

217

218

219 def substructrue_chains(maximum: int):

220 G = SPG.by_max(maximum)

221 chain_xs = []

222 while leaves := G.rot():

223 chain_xs += leaves

224 return chain_xs

225

226 class Diamond:

227 def __init__(self , A, a1 , a2 , B, b1 , b2):

228 self.A = A

229 self.a1 = a1

230 self.a2 = a2

231 self.B = B

232 self.b1 = b1

233 self.b2 = b2

234 self.P1 = (A**2 - a1**2) // 4 # = (B**2 - b1**2) // 4

235 self.P2 = (A**2 - a2**2) // 4 # = (B**2 - b2**2) // 4

236

237 @staticmethod
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238 def from_SSPP(S1, S2, P1 , P2):

239 return Diamond(A=S1,

240 a1=math.sqrt(S1 ** 2 - 4 * P1),

241 a2=math.sqrt(S1 ** 2 - 4 * P2),

242 B=S2 ,

243 b1=math.sqrt(S2 ** 2 - 4 * P1),

244 b2=math.sqrt(S2 ** 2 - 4 * P2),

245 )

246

247 @staticmethod

248 def from_4nodes(dia):

249 return Diamond.from_SSPP (*[ int(node [1:]) for node in dia])

250

251 def __repr__(self):

252 return f"(A={self.A}, a1={self.a1}, a2={self.a2}, B={self.B}, b1={self.b1},

b2={self.b2}, P1={self.P1}, P2={self.P2})"

253

254 def induced_sum_diamond_diagram(maximum: int):

255 graph = nx.Graph()

256 for s_edge in [[int(p[1:]) for p in ps [0:2]] for ps in substructrue_diamond(

maximum , 2) [0]]:

257 graph.add_edge (* s_edge)

258 return graph

259

260

261 def diamond_upper_curve(a_plus_b: int):

262 ...

263

264 # {s = x + y, d = x - y}, Tsd represents this kind of replacement

265 def diamond_sum_nodes_Tsd(maximum: int):

266 xs_s = [[int(p[1:]) for p in ps [0:2]] for ps in substructrue_diamond(maximum , 0)

[0]]

267 xs_Tsd_s = [[p[0] + p[1], p[1] - p[0]] for p in xs_s]

268 return xs_Tsd_s

269
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270

271 def estimate_epsilon(maximum: int):

272 # to find out the constant epsilon such that the line "sqrt(D) = sqrt(S) +

epsilon" bounds the scatter

273 xs_s = [[int(p[1:]) for p in ps [0:2]] for ps in substructrue_diamond(maximum , 0)

[0]]

274 epsilon = maximum

275 result_p = ()

276 for dia in substructrue_diamond(maximum , 0)[0]:

277 # print(epsilon)

278 s0 = int(dia [0][1:])

279 s1 = int(dia [1][1:])

280 if (next_epsilon := math.sqrt(int(s0 + s1) - math.sqrt(s0 + s1))) < epsilon:

281 epsilon = next_epsilon

282 result_p = dia

283 return epsilon , Diamond.from_4nodes(result_p)

284

285

286 def diamond_sum_nodes_AB(maximum: int):

287 return [[int(p[1:]) for p in ps [0:2]] for ps in substructrue_diamond(maximum , 0)

[0]]

288

289

290 def diamond_sum_nodes_sqTsd(maximum: int):

291 xs_s = [[int(p[1:]) for p in ps [0:2]] for ps in substructrue_diamond(maximum , 0)

[0]]

292 xs_sqTsd_s = [[math.sqrt(p[0] + p[1]), math.sqrt(p[1] - p[0])] for p in xs_s]

293 return xs_sqTsd_s

294

295

296 def diamond_scatter_AB(maximum: int , color: str = ’red’):

297 xas_AB_s = np.array(diamond_sum_nodes_AB(maximum))

298 ps_AB_s = xas_AB_s.transpose ()

299 plt.scatter(ps_AB_s [0], ps_AB_s [1], c=color)

300
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301

302 def diamond_scatter_Tsd(maximum: int , color: str = ’red’):

303 x = np.linspace(0, 4*maximum , 100)

304 y = np.array ([(-math.sqrt(xi) + 2*math.sqrt(maximum)) ** 2 for xi in x])

305 xas_Tsd_s = np.array(diamond_sum_nodes_Tsd(maximum))

306 ps_Tsd_s = xas_Tsd_s.transpose ()

307 plt.scatter(ps_Tsd_s [0], ps_Tsd_s [1], c=color)

308 plt.plot(x,y)

309

310

311 def diamond_scatter_sqTsd(maximum: int , color: str = ’red’):

312 xas_sqTsd_s = np.array(diamond_sum_nodes_sqTsd(maximum))

313 ps_sqTsd_s = xas_sqTsd_s.transpose ()

314 plt.scatter(ps_sqTsd_s [0], ps_sqTsd_s [1], c=color)

315

316

317 def diamond_sqS_vs_sqD_scatter(maximum: int , scatter_color: str = ’red’):

318 sqS = np.linspace(0, 2 * math.sqrt(maximum), 100)

319 sqD = np.array([-sqS_i + 2 * math.sqrt(maximum) for sqS_i in sqS])

320 diamond_scatter_sqTsd(maximum , color=scatter_color)

321 plt.plot(sqS , sqD)

322

323

324 def diamond_scatter_sd(maximum: int , color: str = ’red’):

325 xas_Tsd_s = np.array(diamond_sum_nodes_Tsd(maximum))

326 ps_Tsd_s = xas_Tsd_s.transpose ()

327 plt.scatter(ps_Tsd_s [0], ps_Tsd_s [0] * ps_Tsd_s [1] / maximum , c=color)

328

329

330 def diamond_scatter_Tsd_parity(maximum: int , AmB_bound: int):

331 xs_Tsd_s = [p for p in diamond_sum_nodes_Tsd(maximum) if p[1] <= AmB_bound]

332 ps_Tsd_s_same = np.array([p for p in xs_Tsd_s if p[0] % 2 == 0]).transpose ()

333 ps_Tsd_s_diff = np.array([p for p in xs_Tsd_s if p[0] % 2 == 1]).transpose ()

334 plt.scatter(ps_Tsd_s_same [0], ps_Tsd_s_same [1], c=’red’)

335 plt.scatter(ps_Tsd_s_diff [0], ps_Tsd_s_diff [1], c=’blue’)
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336

337

338 def diamond_scatter_Tsd_parity_sqrt(maximum: int , AmB_bound: int):

339 xs_Tsd_s = [p for p in diamond_sum_nodes_Tsd(maximum) if p[1] <= AmB_bound]

340 ps_Tsd_s_same = np.array ([[ math.sqrt(p[0]), math.sqrt(p[1])] for p in xs_Tsd_s

if p[0] % 2 == 0]).transpose ()

341 ps_Tsd_s_diff = np.array ([[ math.sqrt(p[0]), math.sqrt(p[1])] for p in xs_Tsd_s

if p[0] % 2 == 1]).transpose ()

342 plt.scatter(ps_Tsd_s_same [0], ps_Tsd_s_same [1], c=’red’)

343 plt.scatter(ps_Tsd_s_diff [0], ps_Tsd_s_diff [1], c=’blue’)

344

345

346 def density_of_tails(maximum: int , AmB_bound: int):

347 all_diamonds = [p for p in substructrue_diamond(maximum , 0)[0] if int(p[0][1:])

- int(p[1][1:]) <= AmB_bound]

348 diamond_fishes = [p for p in substructrue_diamond(maximum , 0)[0] if (int(p

[0][1:]) - int(p[1][1:])) % 2 == 0]

349 return len(diamond_fishes) / len(all_diamonds)

350 # xs = [p for p in diamond_sum_nodes_Tsd(maximum) if p[1] <= AmB_bound]

351 # xs_same = [p for p in xs if p[0] % 2 == 0]

352 # return len(xs_same)/len(xs)

353

354

355 def diamond_minimize_B(maximum: int):

356 return max(* diamond_sum_nodes_Tsd(maximum), key=lambda p: p[1])

357

358

359 def eight_factors(ApB: int , AmB: int):

360 ...

361

362

363 def life_time_of_sum_node(maximum: int):

364 G = SPG.by_max(maximum)

365 life_sums = [0 for _ in range(2 * maximum + 1)]

366 current_turn = 0
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367 while leaves := G.rot():

368 for leaf in leaves:

369 if sum_matched := re.match(r’S(\d*)’, leaf):

370 print(leaf)

371 life_sums[int(sum_matched [1])] = current_turn

372 current_turn += 1

373 for loop_node in G.graph:

374 if sum_matched := re.match(r’S(\d*)’, loop_node):

375 print(loop_node , "!")

376 life_sums[int(sum_matched [1])] = -1

377 return life_sums

378

379

380 def minimized_N_to_make_sum_node_immortal(maximum_N: int):

381 minN_of_sums = [0 for _ in range(2 * maximum_N + 1)]

382 visited_sums = set()

383 for maximum in range(maximum_N):

384 G = SPG.by_max(maximum)

385 while G.rot():

386 pass

387 for loop_node in G.graph:

388 if loop_node not in visited_sums \

389 and (sum_matched := re.match(r’S(\d*)’, loop_node)):

390 visited_sums.add(loop_node)

391 minN_of_sums[int(sum_matched [1])] = maximum - ...

392 return minN_of_sums

393

394

395 @timing

396 def main():

397 # ===================================

398 N = 200

399 Epsilon = math.sqrt (30) - 2

400

401 diamond_scatter_AB (250, color=’blue’)
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402 diamond_scatter_AB (200, color=’green’)

403 diamond_scatter_AB (150, color=’yellow ’)

404 diamond_scatter_AB (100, color=’orange ’)

405

406 # ===================================

407

408 # ===================================

409 # N = 200

410 # Epsilon = math.sqrt (30) - 2

411 # x = np.linspace(0, 4*N, 100)

412 # y = np.array ([(-math.sqrt(xi) + 2*math.sqrt(N)) ** 2 for xi in x])

413 # y_left = np.array ([( math.sqrt(xi) - Epsilon) ** 2 for xi in x])

414

415 # diamond_scatter_Tsd (500, color=’violet ’)

416 # diamond_scatter_Tsd (250, color=’blue ’)

417 # diamond_scatter_Tsd (200, color=’green ’)

418 # diamond_scatter_Tsd (150, color=’yellow ’)

419 # diamond_scatter_Tsd (100, color=’orange ’)

420 # plt.plot(x, y)

421 # plt.plot(x, y_left)

422 # ===================================

423 # print(estimate_epsilon (200)) # 3.4641016151377544

424 # print(estimate_epsilon (300)) # 3.4641016151377535

425 # N=1000 -> 4.9520474982524485

426 # ===================================

427 # N = 200

428 # Epsilon = 3.4641016151377535 # min(sqrt(A+B) - sqrt(A-B))

429 # sqS = np.linspace(0, 2 * math.sqrt(N), 100)

430 # sqD_left = sqS - Epsilon

431 # plt.plot(sqS , sqD_left)

432 # diamond_sqS_vs_sqD_scatter (250, scatter_color=’blue ’)

433 # diamond_sqS_vs_sqD_scatter (200, scatter_color=’green ’)

434 # diamond_sqS_vs_sqD_scatter (150, scatter_color=’yellow ’)

435 # diamond_sqS_vs_sqD_scatter (100, scatter_color=’orange ’)

436
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437 main()

438 plt.show()
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