SuM AND PrRoODUCT GAME

Pan Lin

Supervised by Dr. Eric Babson

Fall 2023

Abstract

A Sum and Product Game is a logic puzzle first mentioned in a 1979 Gardner column. In
this paper, we explore this game’s properties and behaviors by modeling it as a pseudorandom
bipartite graph and analyzing its structural properties. Moreover, we analyze the distribution
of some specific substructures such as diamonds and fishes. Particularly, we discover the game’s
potential halting conditions, the strict upper bounds of the scatter plot of diamond patterns
and the condition when diamonds become fishes. Overall, these works give some ideas for
further research of our ultimate conjecture, that there exists an upper bound such that any

Sum and Product Game either ends with a finite length lower than this bound or never halts.

Contents

2 Pseudorandom graph induced by a Sum and Product Game|

13 Pattern diagram and substructure

4__Diamond substructurel

[5 Boundary condition|

6 Disinbuh D 5

11

11

13

13

17

19

1 Introduction

1.1 The Game Rule

A Sum and Product Game is a logic puzzle quoted from a 1979 Gardener column jwww.math.
uni-bielefeld.de/~sillke/PUZZLES/logic_sum_product. In this game, Bob chooses two arbi-
trary integers greater than 2 and not greater than N, which are called the chosen answer numbers.
Then Bob tells the sum of the two chosen numbers to Sara secretly and tells the product of the
two chosen numbers to Peter secretly. Sara and Peter are trying to figure out what the two chosen
are. The order does not matter. They can talk to each other but only with words “I know what

the numbers are.” or “I have no way to figure them out yet.” honestly.

Example 1.1. For example, with N = 10, Bob picks 8 and 2. Then Bob tells Sara the sum 10 and
tells Peter the product 16. Here is their conversation:

Peter: “I have no way to figure them out yet.”

Sara: “I have no way to figure them out yet.”

Peter: “I have no way to figure them out yet.”

Sara: “I have no way to figure them out yet.”

Peter: “I know what the numbers are.”

Sara: “I know what the numbers are.”
In this thesis, we are going to analyze this logic game and try to explore an open question:

Conjecture 1.1. For arbitrary upper bound N for choosing the two numbers, is there some positive

K such that the game never halts if and only if the length of the conversation is greater than K.

1.2 How it works

Let’s discuss what exactly Sara and Peter are communicating and what they are thinking about in
such a restricted conversation. In the begining, Peter has the product 16, so he knows the answer
must be one of the two pairs (8,2),(4,4), and Sara’s number can be 8 or 10. Then Peter cannot

figure out which is the one they desire and has to tell Sara “I have no way to figure them out yet.”.

www.math.uni-bielefeld.de/~sillke/PUZZLES/logic_sum_product
www.math.uni-bielefeld.de/~sillke/PUZZLES/logic_sum_product

For Sara, the answer must be among (8,2), (7,3), (6,4), (5,5), and Peter’s number can be 16, 21, 24
or 25. Since Peter did not figure out the answer at the beginning, Peter’s numbers cannot be those
that can be uniquely decomposed into the product of two integers greater than 2, that is 21 and
25, 50 (7,3) and (5, 5) can be crossed out from Sara’s list, but she still doesn’t know which of (8, 2)
or (6,4) it is, so she has to tell Peter “I have no way to figure them out yet.”.

Next, Peter knows that Sara’s elimination is not done yet, and that Sara’s list has at least two
possible answers. If Sara’s number is 10, then her possible answer list is (8,2),(6,4), which we
discussed above. If Sara’s number is 8, then her possible answer list is (6,2), (4,4), and (5,3) is
crossed out. Since Peter still can’t use the available information to get an answer from (8,2) and
(4,4), he can only state that “I have no way to figure them out yet.”...

As the length of conversation grows, the complexity of what they are thinking will be too

complex to follow, so we better find a way to analyze the game globally.

2 Pseudorandom graph induced by a Sum and Product Game

Before discussing the game, let’s make some conventions for convenience. Let’s use A and B to
denote the two numbers that Bob has chosen and suppose A > B without loss of generality. Thus,
an SPG (Sum and Product Game) can be uniquely determined by the three initial settings N, A, B.

In fact, even if A and B are not known in advance, once we know both Sara’s and Peter’s

numbers, then we can uniquely determine A and B by solving the equation system S = A + B,

P = AB, that is A = S*VS*AP p_ S—VET_IP
Therefore, we can analyze this game by generating a bipartite graph instead of the complicated

verbal analysis as in the previous section.

Definition 2.1. For n > 2, a graph induced by the Sum and Product Game with upper bound n

is a bipartite graph G,, := (S,, Pn, &,) where

Sy :={Ss:3Ja,be {2.n}. a+b=s}
P, :={Pp:3Ja,b e {2..n}. ab = p}

&y :={(Ss,Pp) : Ja,b € {2.n}. a+b=sAab=p}

Let E(G) denote the set of edges and S(G) and P(G) the two sets of the vertices for a bipartite

graph G. A bipartite graph (S, P, &) can be simply regard as a graph (SU P, &).

Example 2.1. If N = 10, then the graph Gy is like:

2o

P70

s19° E
-
>
P64
P15 s17 -
P10 ~e i
~ o, u % P60 5., %
R el N 10 —s16
ST — 3y hy P72 :
—P2— 26 g3 3
L >
% W P63
P16 P25 PSO 5. _A?
s 10 —
~o o 55
P100 L v
6\? __s1o © pas
~ A ~ . :
S20 K kf P54 ~
le/ NG o [59 __ P45
N o —S1_
% o [
P40 ~
P8 N _ P48
__s11— 56— P30 >
n Syt 320 e
> P28 / —as
4 — 6
6 ~ | — P4z
S &
Paom N P18 © P4
R 1 L
2 P9 . o
© w P36 o
s18 ° , sa
) ©
% s9 &
P81 g 50— 210 2
_ 0 —s2
P14 o e 7 s
AN ~

P27 P32 ss”

Whenever Peter states “I have no way to figure them out yet.”, he is telling Sara that the
information he currently have corresponds to multiple combinations of A and B. In the graph this
is equivalent to saying that the possible product node is connected to more than one edge, so we
can exclude all leaf product nodes from the graph. Otherwise, if Peter’s number is from the leaves,
he should state “I know what the numbers are.” since the possible answer for him is unique, that
is, the only edge connect to his product node. For Sara, in the current eliminated graph, if her sum
node is adjacent to only one leaf product node, then she can determine the answer; otherwise, only
Peter can get the answer. The analysis is similar for Sara.

To demonstrate how Sara and Peter eliminate options step by step as they exchange information,

we introduce the following definitions:

Definition 2.2. Given G = (5, P, &), let the set of leaf vertices

LS(G) := {s € S : deg(s) < 1}
LP(G) := {p € P : deg(p) < 1}

LV(G) := LS(G) U LP(G)

Definition 2.3. Given G = (S, P, &), let the set of leaf edges

LE(G) :={(u,v) € & :u € LV(G) Vv € LV(G)}

Definition 2.4. Given G = (S, P, &), let the pruned graph prun(G) := (5’, P/, &’) where
S":= S\LS(G)
P’ .= P\LP(G)

& =EN(S x P

Definition 2.5. A pruning process of a graph G is a descending sequence of graphs

prun’(G) O prun(G) D prun?®(G) D prun®(G) D ...

where prun®(G) := G and prun"*!(G) := prun(prun™(G)).
If n is even, note that LS(prun™(G)) = @ so prun™*1(G) only removes product nodes compared

to prun™(G); if n is odd, LP(prun™(G)) = @ so prun™*!(G) only removes sum nodes compared to

prun”™(G).

Example 2.2. The pruning process of G is like:

prun’(G)

&b P70
&> 2 P4
i S g P60 —6:10 536 ®
PO, 9 o -
57‘3;4‘,,12‘225*%\4 -
4
Y P25 PSO— 500
P16 A s1
P00 ~2g 510,5'5 D
o g —s10 ® @
& @ i 410 — S14 i?s:s
i __Pao— % — pas
P8 S11— 5:6 —(P30—_ 3, s
S p2g — &7 10\513‘57_"’42
s6 - P4
P80 "33 - o
i & - P36 P
s S99 — 45 <&
1 217 —P20—210—512 5, -
P81 o - - - .
P27 P32 S5
1 —
prun'(G) =
s1a
S18 N
s7 oo
— 34—
) B s17 s16 il
T T s 5
T4y
ee_ . ¥
s P30 —— 3:10 ——S13
46 A
A, o6 .
8 29
~— s11 — \
| P36
S 1
sis % i
: ©
i
s12
S6 ‘L.:\o _—
2
prun®(G
P12
A
26
s8
s
Pl6—
o —
2
o Si0
s9 36 P18 R
T \29\ 35— 124
ul s —
P20 >
©
: ;
&
P30
S12 -
T~o6s 430
TP a0 s13
'3,
K3
P40
3 —
prun®(G) =
s8
TTTa— o
28
TT—s1w0
46
™ P18
P24 — 36
~— 38 o—" —_— s L
T — "“5\
: P20
©
o I
' g
P30 g
It s12
-10\ e
66
s13
T e

P16
28
s10

P18 2:9

P18 29 S11

s12 66 P36 —

S11

Note that prun”(G) = prun’(G) for n > 7. We say prun’(G) is a fixpoint of prun.

Definition 2.6. Given a graph G = (V, E), V' C V the induced subgraph is given by
GV'|:=V",En(V' x V"))
Definition 2.7. Given a graph G = (V, E), the 2-core of G is K5(G) := G[K3(V')] where
Ky (V) = U{V’ CV VeV deggp(v) > 2}

It is saying, the 2-core of G is the maximal subgraph of G with no leaves.

Definition 2.8. A filtering sequence of graph G is a sequence of set
LE(prun’(G)), LE(prun'(G)), LE(prun®(Q)), . ..

Let LE, (G) := LE(prun™(G)).
property 2.1. LE,(G) = prun™(G)\prun"*(G) forn >0

Intuitively, the filtering sequence is like cabbage leaves that are plucked off until nothing to

prune and the 2-core of G remains.
property 2.2. LE;(G)NLE;(G) =@ fori>j>0
property 2.3. E(G) = | |-, LE;(G) U K3(E(G))
Thus, we classify each edge with respect to their “survival time” in the pruning process.

Definition 2.9. Given a graph G = (V, E), the lifetime is a function lifeg : E — NU {oco} with

n, if v € LE,(G)
lifeg (v) :=

00, if v e Kq(F)

Consider completing a sentence as a turn, and let the number of turns it takes to start the game

until someone says the first “I know...” be the length of the game.

Definition 2.10. Denote the length of a Sum and Product Game with initial setting N, A, B by
len(N, A, B).

Theorem 2.4. len(N, A, B) = lifeq,, ((S(A+ B),PAB)) + 1

Example 2.3. From example 1.1, len(10,8,2) = 5.
In fact, there are four possible outcomes from the pruning process:
1. Peter and Sara can never determine A and B even after any rounds.
2. Peter is able to determine A and B, but Sara cannot, and the game ends.
3. Sara is able to determine A and B but Peter cannot, and the game ends.
4. Sara and Peter are both able to determine A and B.

Theorem 2.5. Given the initial setting N, A, B, let s = A+ B and p = AB, the results can be

determined by following process:

n := lifeg, (Ss, Pp);
if (Ss,Pp) € K»(&y) then
| return OutCome 1

else
if 2 | n then
if |{p € P, : (Ss,Pp) € LE,,(Gy)}| =1 then
| return OutCome 4
else
| return OutCome 2
end
else
if |[{s€ S5, :(S3,Pp) € LE,(G,,)}| =1 then
| return OutCome 4
else
| return OutCome 3
end
end
end

Example 2.4. Suppose N, A, B = 10,6,5, the game never ends as (S11,P30) € K3(&19), so
len(10,6,5) = lifec,, ((S11, P30)) = 0o

10

Example 2.5. Suppose N, A, B =10,7,7, Peter can immediately get the answer, but Sara cannot

determine the answer since she has three different possible options for A, B, that is (7,7), (9, 5), (8, 6).

Example 2.6. Suppose N, A, B = 15,12, 10, Sara can get the answer in turn 2, but Peter cannot

determine the answer since he has two different possible options for A, B, that is (12, 10), (15, 8).

P112

. s23
PI30———— W ———— ¥ —
= 9:14

Example 2.7. Suppose N, A, B =10, 8,2, the game ends at turn 5.
Definition 2.11. For a € 1N>, for A > 2+ o with A — a € Z, let E(A,) := (S24,P(A? — a?))

3 Pattern diagram and substructure

The graph generated by the Sum and Product Game grows chaotically as IV increases. In order
to study some features of parts of the graphs. We can abstract the some patterns out and discuss

them individually.
Definition 3.1. A pattern diagram is a bipartite graph (S, P, &).

Definition 3.2. Given a pattern diagram D, a D-indexed substructure bounded by n is an injective

map o : D < G,,. Denote the set of D-indexed substructure bounded by n as GZ.

4 Diamond substructure

Definition 4.1. A diamond shape is a bipartite graph ¢ := (S¢, Py, &) where S¢ := {Ss1,Ss2},

Py :={Pp1,Pps}, & = {(Ss1,Pp1),(Ss1,Pp2), (Ss2, Pp1), (Ss2, Pp2)}

11

Definition 4.2. A diamond substructure is a {-indexed substructure .
Theorem 4.1. Given N, A, B, a1, as, 081, B2 € N with the following condtion:
1. 4<B<A<L2N
2. 1< ag,a9,p1,82 < A2
3. as < ay and B < Bi
4. A aq,an have the same parity

5. B, 81, B2 have the same parity

, then A2 —a? = B% — 82 and A? — a3 = B? — 32 if and only if there exists a diamond sub-

A2—o¢? Az—ag
4 ’P 4 }’

structure O(A, a1, a9; B, p1,P82) = (S, P, &) where S := {SA,SB}, P := {P
&= (B4, %) B(4, %), B3, %), B3, %))

27 2 27 2 27 2 27 2
Ao SA 4,0
A2 o3 B> B A2 o3 B> B2
P =Pr =) P =P =)
b i B 4
272 5B 272

When we say "given a valid diamond O(A, a1, aq9; B, f1,52)”, we are actually saying ”given

N, A, B, a1, s, 81, P2 € N satisfying the condition of theorem 4.17.
Example 4.1. ((24,16,12;21,11,3) is a diamond substructure.
Example 4.2. ((17,13,11;13,7,1) is a diamond substructure.

property 4.2. Given a valid O(A, a1, a9; B, B1,82), then A,a1,as have the same parity, and

B, B1, B2 have the same parity, but A and B may have different parities.

Proof. If A and o have different parities, then §+ %+ ¢ N which is contradictory to the assumption.
Similarly, we can check other cases with (A, as), (B, 81), (B, 82). Example 4.1 gives the case where

A, B have different parities. O

12

Theorem 4.3. Given a valid O(A, a1, az; B, B1,32), then A2 — B2 = o2 — B = a3 — 33

Proof. Rearrange the equation A2 —a? = B2 — 7 to A2 — B% = o2 — 32, and rearrange the equation

A2 —a2=DB?—-p2toa? - p3?=A%— B? =a%— 2. Then O

5 Boundary condition

Theorem 5.1. Given N > 2. For A,B,C,D € {2.N} with A > B and e > 0, if AB = CD and
C+D+e=A+ B, then A+ B<2A+e—2VeA.

Proof. We know
(24— (C + D))? — 4eA

=4A? —4A(C+ D)+ (C+D)* —4((A+B) - (C+ D))A
= 4A% —4A(C + D) + (C+ D)? — 4A? —4AB + 4A(C + D)
= (C+ D)* —4AB

= (C+ D)*>-4CD

=(C-D)*>0

By rearranging the inequality, it follows that A + B < 24 + e — 2V eA. O

6 Distribution of Diamonds

We note that if a game cannot be stopped, it means that the edge corresponding to the setting
of that game is on a loop. Now, let us start our discussion with the simplest loop, the diamond
substructure.

As shown below, this is a scatterplot of all the diamonds contained in G where the orange,
yellow, green, and blue scatters are for cases N = 100, 150, 200, 250, respectively. The horizontal
coordinates of each point in the graph indicate smaller sum nodes and the vertical coordinates
indicate larger sum nodes, so there should be no points below the y = x line. Note that a point

can correspond to several different diamonds, since product nodes can be different.

13

400 4

300 1

100 §

Figure 6.1: = A, y=1B

In addition to y = z, this scatter appears to be bounded by two different curves, where the

curve on the left is independent of IV, while the curves on the right shift upwards as N increases.

b c\d
<X

a
Theorem 6.1. For a,b,c,d,e, f,g,h € Ny, if it satisfies all the following /

condition:

1. 2 < abdf — cegh — acdg + befh < abdf + cegh + abce + df gh < N e g
2. 1bd eS| #£0 \ ‘ /
|9 | |hc‘7,é h

then there exists a diamond substructure O(%(abdercegh), %(abceerfgh), %(acngrbefh); %(abdf -
cegh), %(abce —dfgh), %(acdg —befh))

Proof. We can arrange a, b, c,d, e, f, g as grid points. By property we know (A + B)(A— B) =
(a1 + B1)(a1 — B1) = (a2 + B2)(a2 — B2). Let A = L(abdf + cegh), a1 = %(abce + dfgh), as =
3(acdg + befh), B = §(abdf — cegh), p1 = % (abce — df gh), B2 = 3(acdg — befh). Since cegh > 0,

14

we know A # B. To prove the product nodes are different, by theorem it suffices to show that

a1 # g, i.e. abce + df gh # acdg + be fh, which can be rearranged as (be — dg)(ac — fh) # 0 O
Corollary 6.2. For uy,us,v1,ve € Ny, if it satisfies all the following condition:

1. 2 <wuy(ug —va) —v1(ug + v2) < (ug +v1)(ug +v2) <N

2. uy # ug and vy # vy

then there exists a diamond substructure O(A, a1, as; B, B1,82) where A = %(U1u2 + vivg), B =

%(uluQ—va); ap = %(U1U1+U202), Qg = %(U201+U1U2)7 pr = %(U1U1—U2U2); B2 = %(U2U1—U201)7

Consider the extreme case u = u; = us, v = v; = ve. Then, a diamond
substructure is given by O(A, a1, as; B, f1, f2) where A = %(u2 +92), B = 1
%(u2 —v?), a; = uv, ag = uv, B = 0, B2 = 0. It follows that u = /A + B / ‘ \
U1 U1 U2

and v =+vA — B. ‘>< ><‘
_ o , 1 1 1

Theorem 6.3. Given game upper bound N, let ¢ : GY — RZ \ ‘ /

o(QO(A, a1,a2; B, 51, 02)) := (A+ B, A— B), then the scatter plot of the point Vo

set 0(GS)) is bounded above by the curve y = (—/x 4 2v/N)?

Proof. We know % + G is the greatest answer number appearing in O(A, a1, as; B, 1, B2) which

is chosen from the range {2..N}; therefore, we have % + % < N, implying 2N > A+ a; =
1w+ +w = S(u+v)? > L(VA+ B+ VA - B)?, implying VA— B < —V/A+B+2V/N. O

Theorem 6.4. Given game upper bound N, let o : GJ?, — R2, 0(O(A, a1, a0; B, 1, B2)) := (A +
B, A— B), then the scatter plot of the point set o(GS,) is bounded above by y = (v/x + €)% for some

real € > 0.

Proof. Similarly, we know u — v must be not smaller than some constant ¢ > 0; otherwise, it follows

B =0 out of range. Thus, e < u —v =+vA+ B —+/A— B implies VA - B<VA+ B —e¢. O

The following scatterplot Figure 6.2 transforms the coordinates of Figure 6.1, changing from
t=B y=Atoxr=A+B,y=A—B. The curves y = (—/z + 2V/N)? and y = (\/z + €)? are

also shown.

15

In fact, within the bound N < 500, the diamond with the minimal v/A + B —+/A — B is the one
in Example 4.2, so we know € < v/30 — 2. In addition, Figure 6.3 below shows a scatterplot derived
by squaring the coordinates of Figure 6.2, transforming © = A + B,y = A — B into z = /A + B,
y = /A — B. This transformation linearize the bounding curves to y = —z + 2v/N and y = = + €.

Conjecture 6.1. ¢ = /30 —2

T T T T T T T T T
100 200 300 400 500 600 700 800 900

Figure 6.2: t=A+B,y=A—-B

16

Figure 6.3: t =vVA+B,y=+vVA—-B

7 Fishes

Definition 7.1. A fish shape is a bipartite graph Fish := (Srish, Prish, &Fisn) Where
Srish := {Ss1,882, 853,854}, Prish := {Pp1,Pp2, Pps},
gFiSh = {(Ssla Pp1)7 (8817 Pp2)7 (8827 Pp1)> (S‘927 Pp2)7 (8817 Pp3)7 (SS3> Pp3)a (SS47 PPS)}

Theorem 7.1. Given game upper bound N and a valid diamond O(A, ar, ag; B, 1, B2), if it satisfies

all the following condition:
1. ay, a9 € {4.2N}I\{B}
2. Each of the pairs (A, B), (a1, 1), (ag, B2) has the same parity
3. A—B,a1 — B1,00 — P2 > 4

then there exists a substructure like the diagram shown below:

17

A2 ol _p(B® _ B
Sop P —73)=P(G -7
\%i% Apen BB
2 2 2 2
2 2 445
paA=E 22 g4 SB
29 4 By
2 2
FEF Fx7
A2 _ o3\ _ p(B® _ B3
Say PG —F)=P(F —F)

Proof. By given conditions, we know Say,Sas € Sy. As A, B have the same parity, it is the

AQZB2 are integers. As A+ B > A— B > 4, we

case A+ B and A — B are even, implying

know AQZBQ > 4, so P# € Py. As % — G- B az % > 2, by theorem we have

2 2
A2,BQ — a1751
4 4

2_ 2
= 0422527 implying E(%a%)’E(%v%)’E(%’&) € SN. -

The following theorems show two basic ways that two diamonds can stick together to form some

interesting fish structures.

Theorem 7.2. Given game upper bound N and valid diamonds Q(A, a1, az; B, 51, B2), O(A, as, as; B, B2, B3),

if it satisfies all the following condition:
1. a1, a2,a3 € {4.2N}\{B}
2. Each of the pairs (A, B), (a1, 1), (ag, B2), (a3, B3) has the same parity
3. A= B,aqg — fi,a2 — Ba,a3 — B3 > 4

then there exists a substructure like the diagram shown below:

A2 of B> B
Sa PG -7)—P(F - 7)
22482 2 p2 448 A2 2 2 2 2 B4Ps
2 p) A%?_B 2 T3 2 p) A « B B) 2
@ B
TZi% A x /ﬁ
TE3 T3
A2 o} B> B3
Saz PG -%F) —P(F - 7)

Proof. Combining the theorem and theoremwith O(A, a1, a9; B, b1, 82) and O(A, ag, as; B, B2, B3),

2 2 2 2 2 2
we have A°7B" — @1Z01 _ 037l _ oiZP oo p(4, B B(%, B, B(%, %), B(%, %) ¢ by O

18

Theorem 7.3. Given game upper bound N and valid diamonds O(A, a1, az; B, 81, f2), O(B, a1, as; Cyy1,72),

if it satisfies all the following condition:
1. a1,y € {4.2N}\{B,C}
2. Each of the triples (A, B,C), (a1, 81,7), (a2, B2,72) has the same parity
3. A=B,B—C a1 — f1,a2 — 2,81 =71, B2 — 72 > 4

then there exists a substructure like the diagram shown below:

EARTRAE 2_p2 2 2 2 2
3 T3 pA2-B A aiy _ p(B B
Sa; —— P~ P(r-3)=P(GF - 7)
S A5 A B
2 s LA §+3
Li& Aia—l 2 2
CpA2_c? e
Say —— P2 54 SB sC
2 4 J2 A4 O Ao
2 2 2 2 o) P
B4 P2
Byg 2 §+%
B>—¢? A% o3\ _p(B> _ B3
SP 5 P P -7)=P(GF - 7)
7
B
F+3
Sp2

Proof. Note that A —C = (A— B)+ (B —C) > 8 > 4. Similarly, we have a; — v1,a0 — 72 > 4
Apply theoremto O(A, ay, (g Bv ﬂlv 52)7 <>(Ba aq, (23 Ca 517 ﬁQ) and <>(A7 Qaq, Q2 Ca 517 ﬂQ)a then

it gives the desired substructure. O

8 Appendix

Here is the code to plot the graph induced by a Sum and Product Game, stat some data of diamond
substructures and sketch the scatterplot of diamond substructures as in the figures.

1 import math

2 import re

| import numpy as np
5 import networkx as nx
6 from itertools import combinations_with_replacement, combinations, chain

7 import matplotlib.pyplot as plt

from

from

from

from

def

clas

typing import *

time import time

sklearn.linear_model import LogisticRegression

scipy.optimize import curve_fit

timing (f):

def timing_f (*args, **xkwargs):

start_time = time ()
result = f(*xargs, **kwargs)
print ("--- %s seconds ---" % (time()

return result

return timing_f

s SPG:

start_time))

def __init__(self, graph: nx.Graph, edge_labels: dict):

self.graph: nx.Graph = graph

self.edge_labels: dict = edge_labels

self.colors = [’pink’ if node.startswith(’S’) else

self.graphl]

@staticmethod

def by_max (maximum: int, highlights_cond=None):

graph = nx.Graph ()

edge_labels = {}

for i, j in combinations_with_replacement (range (2,

edge = (f°s{i + j}’, £’P{i * j}’)

edge_labels[edge]l = f°{i}:{j}’

graph.add_edge (xedge, _=(i, j))

G = SPG(graph, edge_labels)

if highlights_cond is not None:

for index, node in enumerate(G.graph):

if highlights_cond(node):

20

’lightblue’ for node in

maximum + 1),

2):

44

48

54

66

G.colors[index] = ’blue’ if re.match(r’P(\d#*)’, node) is not
None else ’red’

return G

def copy(self) -> ’SPG’:

return SPG(self.graph.copy(), self.edge_labels.copy())

def plot(self, num: int = 1, figsize: Tuple[int, int] = (6, 6), optioms: Dict =
None) :
if options is None:

options = {}

current_options = {
’node_color’: self.colors,
node_size’: 600,
>font_size’: 10,
’width’: .8,

with_labels’: True,
}
current_options.update (options)
plt.figure(num, figsize)
pos = nx.nx_agraph.graphviz_layout (self.graph)
nx.draw(self.graph, pos, **current_options)

nx.draw_networkx_edge_labels (self.graph, pos, edge_labels=self.edge_labels)

def leaves(self) -> List:

return [i for i in self.graph if self.graph.degree(i) <= 1]

def rot(self) -> List:
self .graph.remove_nodes_from(res := self.leaves())
self .colors = [’pink’ if node.startswith(’S’) else ’lightblue’ for node in
self.graphl]
self .edge_labels = dict([(key, self.edge_labels[key]) for key in self.
edge_labels.keys () if
key [0] not in res and key[1] not in res])

print (self.edge_labels)

21

73 return res

75 def succ(self) -> ’SPG’:
76 ret = self.graph.copy()

77 ret.remove_nodes_from(self.leaves ())

78 return SPG(ret, self.edge_labels)
79

80 def game_life(self) -> int:

81 count = 0

82 g = self.copy()

83 while g.rot():

84 count += 1

85 return count

86

ss def SPG_stats(maximum: int, modes=()) -> List:
89 G = SPG.by_max (maximum)

90 initial_G = G.copy()

91 last_leaves = []

92 dropped_nodes = iter (())

93 life_count = 0

94 while True:

95 G.graph.remove_nodes_from(last_leaves)
96 if leaves := G.leaves():

97 last_leaves = leaves

98 else:

99 res = []

100 if ’game_life’ in modes:

101 res.append (life_count)

102 if ’last_leaves’ in modes:

103 res.append(last_leaves)

104 if ’chains’ in modes:

105 chains = initial_G.copy ()

106 chains.graph.remove_nodes_from(G.graph)

107 res.append(chains)

22

108

109

110

136

def

def

if ’initial_graph’ in modes:
res.append (initial_G)

if ’terminal_graph’ in modes:
res.append (G)

return res

life_count += 1

longest_chain(maximum: int) -> SPG:
last_leaves, chains = SPG_stats(maximum, (’last_leaves’, ’chains’))

nodes = nx.node_connected_component (chains.graph, last_leaves[0])

chains.graph.remove_nodes_from([n for n in chains.graph if n not in nodes])

return chains

n_step_chains (maximum: int, step_upper: int, step_lower: int = 1) -> SPG:

G = SPG.by_max (maximum)
subgraph_nodes = set ()

for s_node in G.graph:

if (s_re := re.match(r’S(\d*)’, s_node)) is not None and (s_node_val :=

s_re.group(1))):

p_nodes = G.graph.neighbors(s_node)
p_exist = False
for p_node_0, p_node_1 in combinations(p_nodes, 2):
diff = abs(int(re.match(r’P(\d*)’, p_node_0).group (1))
match(r’P(\d*)’, p_node_1).group(1)))
print (diff)
if step_upper >= diff >= step_lower:
subgraph_nodes.add(p_node_0)
subgraph_nodes.add(p_node_1)
p_exist = True
if p_exist:

subgraph_nodes.add (s_node)

return SPG(G.graph.subgraph(subgraph_nodes), {})

23

int (re.

159

160

161

162

163

166

168

169

def

; def strict_n_step_chains(maximum: int, step_upper: int, step_lower: int = 1) -> SPG:

G = SPG.by_max (maximum)
subgraph_nodes = set ()
for s_node in G.graph:
if (s_re := re.match(r’S(\d#*)’, s_node)) is not None and (s_node_val := int(
s_re.group(1))):

p_nodes = G.graph.neighbors(s_node)

p_node_vals = [int(re.match(r’P(\d*)’, p).group(1l)) for p in p_nodes]
if (diff := abs(max(p_node_vals) - min(p_node_vals))) <= step_upper and
diff >= step_lower:
subgraph_nodes.add (s_node)

subgraph_nodes.update (G.graph.neighbors (s_node))

return SPG(G.graph.subgraph(subgraph_nodes), {})

deg_n_prod_nodes (maximum: int, deg: int, sum_lower_bound: int):
G = SPG.by_max (maximum)
counter = 0
subgraph_edges = set ()
for node in G.graph:
if G.graph.degree(node) == deg and re.match(r’P(\d*)’, node) is not None:
for neighbor in G.graph.neighbors(node):
if neighbor < sum_lower_bound:
break
else:
counter += 1
for edge in G.graph.edges(node):
subgraph_edges.add (edge)

return counter, SPG(G.graph.edge_subgraph(subgraph_edges), {})

24

174

180

186

189

190

191

192

193

194

195

196

197

198

199

200

201

206

def

def

def

def

deg_n_highlight (maximum: int, deg: int):
G = SPG.by_max (maximum)

for index, node in enumerate (G.graph):

if G.graph.degree(node) == deg:
G.colors[index] = ’blue’ if re.match(r’P(\dx*)’,
red’
return G
embed_graph (maximum: int, maximum_sub: int):
G = SPG.by_max (maximum)
G_sub = SPG.by_max(maximum_sub)
for index, node in enumerate(G.graph):
if node not in G_sub.graph:
G.colors[index] = ’blue’ if re.match(r’P(\dx)’,

red’

return G

unlooped_lifetime (node: str):
maximum = 4
while True:
g = SPG.by_max (maximum)
while res := g.rot():
if node in res:
return maximum

maximum += 1

substructrue_diamond (maximum: int, sum_lower_bound:

G = SPG.by_max (maximum)

diamond_nodes = set ()
diamond_leading_nodes = set ()
diamonds = []

for index, node in enumerate(G.graph):

25

int):

node) is not None else

node) is not None else

20

20

21

N}

N

8

c
)

0

def

if node not in diamond_leading_nodes and (sum_matched := re.match(r’S(\dx)’,

node)) :
diamond_leading_nodes.add (node)
if int(sum_matched[1]) >= sum_lower_bound:

for neighborl, neighbor2 in combinations(G.graph.neighbors(node),

for nn in G.graph.neighbors(neighbori):
if nn not in diamond_leading_nodes and nn in G.graph.
neighbors (neighbor2) \
and int(re.match(r’S(\d*)’, nn) [1]) >=
sum_lower_bound:
diamond_nodes.update ([node, nn, neighborl, neighbor2])
diamonds.append ([node, nn, neighborl, neighbor2])

return diamonds, diamond_nodes

substructrue_chains (maximum: int):

G = SPG.by_max (maximum)
chain_xs = []
while leaves := G.rot():

chain_xs += leaves

return chain_xs

class Diamond:

def __init__(self, A, al, a2, B, bl, b2):
self .A = A
self.al = al
self.a2 = a2
self .B = B
self.bl = bl
self .b2 = b2

self .P1

(A**2 - al*x2) // 4 # = (B**2 - bilx*x2) // 4

self .P2 = (A**2 - a2xx%2) // 4 # = (Bx*2 - b2xx2) // 4

@staticmethod

26

256

266

269

def from_SSPP(S1, S2, P1,

return Diamond (A=S1,

@staticmethod

al=math.

a2=math.

def from_4nodes(dia):

P2):

sqrt (S1

sqrt (s1

.sqrt (82

.sqrt (82

* %

* %

* %

* %

2 - 4 % P1),

2 - 4 x P2),

2 - 4 % P1),

2 - 4 % P2),

return Diamond.from_SSPP(*[int(node[1:]) for node in dial)

def __repr__(self):

return f£" (A={self.A},

b2={self.b2}, Pi={self.P1},

al={self.al}, a2={self.a2},

def induced_sum_diamond_diagram(maximum:

graph = nx.Graph()

P2={self .P2})"

int):

B={self.B},

bl={self.bl},

for s_edge in [[int(p[1:]) for p in ps[0:2]] for ps in substructrue_diamond (

maximum, 2) [0]]:

graph.add_edge (*s_edge)

return graph

def diamond_upper_curve (a_plus_b: int):

{s = x +y, d=1x -y},

def diamond_sum_nodes_Tsd(maximum: int)

Tsd represents this kind of replacement

xs_s = [[int(p[1:]1) for p in ps[0:2]] for ps in substructrue_diamond (maximum, O0)

[o11

xs_Tsd_s = [[p[0] + pl[1],

return xs_Tsd_s

p[1] - p[0]] for p in xs_s]

27

286

289

290

291

294

295

296

298

299

300

def

def

def

def

estimate_epsilon(maximum: int):
to find out the constant epsilon such that the line "sqrt(D) = sqrt(sS) +

epsilon" bounds the scatter

xs_s = [[int(p[1:]) for p in ps[0:2]] for ps in substructrue_diamond (maximum, O)
[ol1]
epsilon = maximum

result_p = ()
for dia in substructrue_diamond (maximum, 0) [0]:

print(epsilon)

sO = int(dia[0]1[1:])

sl = int(dial[1]([1:]1)

if (next_epsilon := math.sqrt(int(sO + s1) - math.sqrt(sO + s1))) < epsilon:
epsilon = next_epsilon
result_p = dia

return epsilon, Diamond.from_4nodes (result_p)

diamond_sum_nodes_AB(maximum: int):
return [[int(p[1:]) for p in ps[0:2]] for ps in substructrue_diamond (maximum, O)

[ol1

diamond_sum_nodes_sqTsd (maximum: int):

xs_s = [[int(p[1:]) for p in ps[0:2]] for ps in substructrue_diamond (maximum, O)
(o1l

xs_sqTsd_s = [[math.sqrt(p[0] + p[1]), math.sqrt(p[1] - p[0])] for p in xs_s]

return xs_sqTsd_s

diamond_scatter_AB(maximum: int, color: str = ’red’):
xas_AB_s = np.array(diamond_sum_nodes_AB(maximum))
ps_AB_s = xas_AB_s.transpose ()

plt.scatter (ps_AB_s[0], ps_AB_s[1], c=color)

28

301

305

309

316

318

def diamond_scatter_Tsd(maximum: int, color: str = ’red’):

def

def

def

def

x = np.linspace (0, 4*maximum, 100)

y = np.array([(-math.sqrt(xi) + 2+*math.sqrt(maximum)) ** 2 for xi in x])
xas_Tsd_s = np.array(diamond_sum_nodes_Tsd (maximum))

ps_Tsd_s = xas_Tsd_s.transpose ()

plt.scatter(ps_Tsd_s[0], ps_Tsd_s[1], c=color)

plt.plot(x,y)

diamond_scatter_sqTsd(maximum: int, color: str = ’red’):

xas_sqTsd_s =

ps_sqTsd_s =

np.array(diamond_sum_nodes_sqTsd (maximum))

xas_sqTsd_s.transpose ()

plt.scatter(ps_sqTsd_s [0], ps_sqTsd_s[1], c=color)

diamond_sqS_vs_sqD_scatter (maximum: int, scatter_color:

sqS = np.linspace(0, 2 * math.sqrt(maximum), 100)

str

‘red’):

sqD = np.array([-sqS_i + 2 * math.sqrt(maximum) for sqS_i in sqS])

diamond_scatter_sqTsd (maximum, color=scatter_color)

plt.plot (sqS, sqgD)

diamond_scatter_sd(maximum: int, color: str = ’red’):
xas_Tsd_s = np.array(diamond_sum_nodes_Tsd (maximum))
ps_Tsd_s = xas_Tsd_s.transpose ()

plt.scatter (ps_Tsd_s[0], ps_Tsd_s[0] * ps_Tsd_s[1] / maximum,

diamond_scatter_Tsd_parity (maximum: int, AmB_bound: int):

xs_Tsd_s = [p
ps_Tsd_s_same

ps_Tsd_s_diff

plt.scatter (ps_Tsd_s_same[0], ps_Tsd_s_same[1], c=’red’)

for p in diamond_sum_nodes_Tsd(maximum)

np.array ([p for p in xs_Tsd_s if p[0]

np.array ([p for p in xs_Tsd_s if p[0]

c=color)

if p[1] <= AmB_bound]

h
%

2

2

plt.scatter (ps_Tsd_s_diff [0], ps_Tsd_s_diff[1], c=’blue’)

29

0]) .transpose ()

1]) .transpose ()

336

338 def diamond_scatter_Tsd_parity_sqrt(maximum: int, AmB_bound: int):

339 xs_Tsd_s = [p for p in diamond_sum_nodes_Tsd(maximum) if p[1] <= AmB_bound]

340 ps_Tsd_s_same = np.array([[math.sqrt(p[0]), math.sqrt(p[1])] for p in xs_Tsd_s
if p[0] % 2 == 0]).transpose ()

341 ps_Tsd_s_diff = np.array([[math.sqrt(p[0]), math.sqrt(p[1]1)] for p in xs_Tsd_s
if p[0] % 2 == 1]).transpose ()

342 plt.scatter (ps_Tsd_s_same[0], ps_Tsd_s_same[1], c=’red’)

343 plt.scatter(ps_Tsd_s_diff [0], ps_Tsd_s_diff[1], c=’blue’)

346 def density_of_tails(maximum: int, AmB_bound: int):

347 all_diamonds = [p for p in substructrue_diamond(maximum, 0) [0] if int(p[0][1:])
- int(p[11[1:]1) <= AmB_bound]

348 diamond_fishes = [p for p in substructrue_diamond (maximum, 0) [0] if (int(p
[01[1:1) - int(p[1]1[1:1)) % 2 == 0]

349 return len(diamond_fishes) / len(all_diamonds)

350 # xs = [p for p in diamond_sum_nodes_Tsd (maximum) if p[1] <= AmB_bound]

351 # xs_same = [p for p in xs if p[0] % 2 == 0]

352 # return len(xs_same)/len(xs)

354
355 def diamond_minimize_B(maximum: int):

356 return max (*diamond_sum_nodes_Tsd (maximum), key=lambda p: pl[1])

350 def eight_factors(ApB: int, AmB: int):
360
361
362

363 def life_time_of_sum_node (maximum: int):

364 G = SPG.by_max (maximum)
365 life_sums = [0 for _ in range(2 * maximum + 1)]
366 current_turn = 0

30

367

368

369

389

390

391

393

394

396

397

398

399

400

101

def

while leaves := G.rot():
for leaf in leaves:
if sum_matched := re.match(r’S(\dx*)’, leaf):
print (leaf)
life_sums [int (sum_matched[1])] = current_turn
current_turn += 1

for loop_node in G.graph:

if sum_matched := re.match(r’S(\d*)’, loop_node):
print (loop_node, "!")
life_sums[int (sum_matched[1])] = -1

return life_sums

minimized_N_to_make_sum_node_immortal (maximum_N: int):

minN_of_sums = [0 for in range (2 * maximum_N + 1)]

visited_sums = set ()
for maximum in range (maximum_N):
G = SPG.by_max (maximum)
while G.rot():
pass
for loop_node in G.graph:
if loop_node not in visited_sums \
and (sum_matched := re.match(r’S(\d#*)’, loop_node)):
visited_sums.add(loop_node)
minN_of_sums [int (sum_matched [1])] = maximum -

return minN_of_sums

@timing

def main():
#f ===================================
N = 200

Epsilon = math.sqrt(30) - 2

diamond_scatter_AB (250, color=’blue’)

31

402 diamond_scatter_AB (200, color=’green’)

403 diamond_scatter_AB (150, color=’yellow’)

104 diamond_scatter_AB (100, color=’orange’)

405

406 #f ===================================

407

408 #f ===================================

409 # N = 200

410 # Epsilon = math.sqrt(30) - 2

411 # x = np.linspace (0, 4*N, 100)

412 # y = np.array([(-math.sqrt(xi) + 2*math.sqrt(N)) ** 2 for xi in x])
413 # y_left = np.array([(math.sqrt(xi) - Epsilon) ** 2 for xi in x])
414

415 # diamond_scatter_Tsd (500, color=’violet’)

416 # diamond_scatter_Tsd (250, color=’blue’)

417 # diamond_scatter_Tsd (200, color=’green’)

418 # diamond_scatter_Tsd (150, color=’yellow’)

419 # diamond_scatter_Tsd (100, color=’orange’)

420 # plt.plot(x, y)

421 # plt.plot(x, y_left)

122 # ===================================

423 # print(estimate_epsilon (200)) # 3.4641016151377544
424 # print(estimate_epsilon (300)) # 3.4641016151377535
425 # N=1000 -> 4.9520474982524485

426 # ===================================

427 # N = 200

428 # Epsilon = 3.4641016151377535 # min(sqrt(A+B) - sqrt(A-B))
429 # sqS = np.linspace(0, 2 * math.sqrt(N), 100)

430 # sqD_left = sqS - Epsilon

431 # plt.plot(sqS, sqD_left)

432 # diamond_sqS_vs_qu_scatter(250, scatter_color=’blue’)
433 # diamond_sqS_vs_sqD_scatter (200, scatter_color=’green’)
434 # diamond_sqS_vs_sqD_scatter (150, scatter_color=’yellow’)
435 # diamond_sqS_vs_sqgD_scatter (100, scatter_color=’orange’)

436

32

137 main ()

135 plt.show ()

33

	Introduction
	The Game Rule
	How it works

	Pseudorandom graph induced by a Sum and Product Game
	Pattern diagram and substructure
	Diamond substructure
	Boundary condition
	Distribution of Diamonds
	Fishes
	Appendix

