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Abstract

In the 90’s, Stembridge discovered that plugging q = −1 into rank generating functions for plane partitions

gives formulas for plane partitions fixed under an involution. In 2004, Reiner, Stanton, and White gener-

alized the discovery to the setting of cyclic group actions on finite sets. They introduced the cyclic sieving

phenomenon when a cyclic group acts on a set such that the number of fixed points is equal to the result

of plugging a root of unity into a generating function. In the past 12 years, many connections between the

cyclic sieving phenomena and tableaux combinatorics have been discovered. In this thesis, we explore these

results and prove explicit formulas for minimal degree CSPs.
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Chapter 1

Introduction

A plane partition π is a finite collection of left-justified cells filled with nonnegative integers such that

each column weakly decreases from top to bottom and each row weakly decreases from left to right, i.e.

π = [πi,j ]i≤a,j≤b, πi,j ≥ πi+1,j and πi,j ≥ πi,j+1 for all i, j. Alternatively, we can visualize a plane partition

in 3-dimensions by stacking πi,j many unit cubes on cell (i, j). We denote the set of all plane partitions that

fit inside the box with dimensions [a]× [b]× [c] by PP (a, b, c). In this case, πi,j ≤ c for all i, j.

Let ⟨σ⟩ be a cyclic group with order 2. When σ acts on π ∈ PP (a, b, c), it replaces each nonzero number

k with c− k and rotates the plane partition by 180◦. We say π is symmetric if σ(π) = π, and denote the set

of symmetric plane partitions by PP (a, b, c)σ.

In the 1990s, Stembridge discovered the remarkable “q = −1” phenomenon [4] [9], which is a direct rela-

tionship between the generating function for plane partitions and the number of symmetric plane partitions.

Let

N(q) =
∑

π∈PP (a,b,c)

q|π|,

where |π| =
∑

i≤a
j≤b

πi,j . When plugging q = −1 into the formula, we find that |PP (a, b, c)σ| = N(−1).

Stembridge’s discovery was just the opening act. Many combinatorial finite sets were then proved to

exhibit similar phenomena with corresponding generating functions and cyclic symmetries. In fact, the

“q = −1” phenomenon is the first instance of cyclic sieving phenomenon which will be discussed in the

following, and ω = −1 is the second root of unity.

In [6], Reiner, Stanton, and White introduced the cyclic sieving phenomenon, a generalization of
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“q = −1” phenomenon, which is defined below.

Definition 1.0.1 (Cyclic Sieving Phenomenon). Let X be a finite set and G be a finite cyclic group which

acts on X. For a group element g ∈ G, we denote the fixed point set of X by

Xg = {x ∈ X : gx = x}.

Let ω be a primitive root of unity which has the same order as g. Let f(q) be a polynomial in q with

coefficients in Z≥0. The triple (X,G, f(q)) is said to exhibit the cyclic sieving phenomenon, or CSP, if, for

all g ∈ G, we have

|Xg| = f(ωg).

See [8] for more details.

When CSP is extended to the product of two cyclic groups acting on a set X, the bicyclic sieving

phenomenon is introduced, which was first defined in [1].

Definition 1.0.2 (Bicyclic Sieving Phenomenon). Let X be a finite set, and let G = ⟨g⟩, G′ = ⟨g′⟩ be finite

cyclic groups with G×G′ acting on X. For group elements gr ∈ G and (g′)s ∈ G′, we denote the fixed point

subset of X by

X(gr,(g′)s) = {x ∈ X : (gr, (g′)s)x = x}.

Let ω = e2πi/|G|, ω′ = e2πi/|G
′|, and let f(q, t) be a polynomial. The triple (X,G × G′, f(q, t)) is said to

exhibit the bicyclic sieving phenomenon, or biCSP, if, for all gr ∈ G and (g′)s ∈ G′, we have

|X(gr,(g′)s)| = f(ωr, (ω′)s).

Rhoades shows the following connection between cyclic sieving phenomenon and tableau combinatorics

as follows.

Theorem 1.1. Let λ be a partition such that λ = (nm) for some positive integers n,m, then the triple

(
SY T (λ), ⟨∂⟩, fλ(q)

)
exhibits the cyclic sieving phenomenon.
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We will define the standard Young tableau SYT, the group ⟨∂⟩ with the operator of promotion of SYT,

and the polynomial fλ(q) in Section 2.2.

Theorem 1.2 (Oh and Rhoades [5]). Let n and k be positive integers, then the triple (Zn,k,Zn × Zk, Zn,k(q, t))

exhibits the bicyclic sieving phenomenon, where Zn,k =
{
(a1, a2, . . . , an)|{a1, a2, . . . , an} = {ω, ω2, . . . , ωk}

}
,

and

Zn,k(q, t) =
∑

T∈SY T (n)

qmaj(T ) ·

n− des(T )− 1

n− k


q

· f shape(T )(t).

The thesis is organized as follows. In chapter 2, some necessary definitions and examples of G-modules

and tableaux combinatorics are provided. We also introduce examples of CSPs and biCSPs which are

connected to tableaux combinatorics. In chapter 3, we discuss the minimum degree of the polynomials for

the set Z
(m)
z,k which still exhibit CSPs and present proofs.
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Chapter 2

Background

2.1 G-module

In this section, we give definitions and examples of G-modules.

Definition 2.1.1 (group). A group is a nonempty set G with a binary operation f : G ∗G → G such that

the following conditions are satisfied:

1. (associative) For any a, b, c ∈ G, a ∗ (b ∗ c) = (a ∗ b) ∗ c.

2. (closed) For any a, b ∈ G, a ∗ b ∈ G as well.

3. (identity) There exists an element e ∈ G so that a ∗ e = e ∗ a = a.

4. (inverse) For every a ∈ G, there exists a−1 ∈ G so that a ∗ a−1 = a−1 ∗ a = e.

Example 1. The symmetric group is an example of a group. Consider the finite set X = {1, 2, . . . , n}

and the symmetric group of permutations of X, denoted as Sn. By using cycle notation for permutations,

for (2, 1, 3), (2, 3) ∈ S3, (2, 1, 3)(2, 3) = (1, 3) ∈ S3. Here, we use the convention that the permutations are

performed from right to left.

Definition 2.1.2 (group action). An action of a group G on a set X is a function f : G × X → X with

(g, x) 7→ g · x such that

• for the identity e in G, e · x = x for all x ∈ X.
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• for all g1, g2 ∈ G, x ∈ X, (g1 · g2) · x = g1 · (g2 · x).

Example 2. The symmetric group G = Sn acts on the set X = {1, . . . , n} as follows. For every element

σ ∈ Sn and x ∈ X, σ · x = σ(x). For σ = (2, 1, 3) ∈ S3, the group action on every element in X is

(2, 1, 3) · 1 = 3

(2, 1, 3) · 2 = 1

(2, 1, 3) · 3 = 2.

Definition 2.1.3 (permutation matrix). Given an ordering X = {x1, . . . , xn} and g ∈ G for G be a group,

[g]x is the matrix whose (i, j) entry is 1 if g(xj) = xi and 0 otherwise.

Lemma 2.1. Given g, h ∈ G for G a group and an ordering X = {x1, . . . , xn}, [g]x · [h]x = [g · h]x.

Proof. Let i, j be the indices of the columns and rows for the matrix [g]X , respectively, and let j, ℓ be the

indices of the columns and rows for the matrix [h]X , respectively.

For every (i, j) entry in the matrix [g]X and every (j, ℓ) entry in the matrix [h]X ,

([g]X)ij =


1 if g(xj) = xi

0 otherwise

, ([h]X)jℓ =


1 if h(xℓ) = xj

0 otherwise

This follows that for every (i, ℓ) entry in the matrix ([g]X · [h]X)iℓ,

([g]X · [h]X)iℓ =
∑
j

([g]X)ij · ([h]X)jℓ

= # {j | g(xj) = xi, h(xℓ) = xj}

=


1 if gh(xℓ) = xi

0 otherwise

= ([g · h]X)iℓ

Thus, [g]X · [h]X = [g · h]X .

Example 3. Let G be the symmetric group S3, and g = (1, 3, 2), h = (1, 2), where g, h ∈ S3. According to
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the definition of permutation matrix,

[(1, 3, 2)]X =


0 1 0

0 0 1

1 0 0

 , [(1, 2)]X =


0 1 0

1 0 0

0 0 1

 .

Thus,

[(1, 3, 2)]X · [(1, 2)]X =


0 1 0

0 0 1

1 0 0

 ·


0 1 0

1 0 0

0 0 1

 =


1 0 0

0 0 1

0 1 0

 .

Alternatively, compute (1, 3, 2) · (1, 2) = (2, 3), and

[(2, 3)]X =


1 0 0

0 0 1

0 1 0

 .

Therefore, [(1, 3, 2)]X · [(1, 2)]X = [(1, 3, 2) · (1, 2)]X , which verifies that [g]X · [h]X = [g · h]X .

Definition 2.1.4 (G-module). Let X be a set, and take its linear combinations to form a complex vector

space V = CX. In other words, if X = {a1, a2, . . . , an}, then CX is the set of formal linear combinations of

elements in X,

CX = {c1 · a1 + c2 · a2 + · · ·+ cn · an : ci ∈ C ∀i}.

The elements of X are underlined because they are regarded as vectors. If a given group G acts on X, then

it also acts on CX by extending the action linearly.

Example 4. If the set X =
(
[3]
2

)
= {{1, 2}, {1, 3}, {2, 3}}, then the vector space

V = CX = {c1 · 1 + c2 · 2 + c3 · 3 | c1, c2, c3 ∈ C},

where 1 = {1, 2}, 2 = {1, 3}, 3 = {2, 3}.

Let us choose the ordered basis {1, 2, 3}. Then for the group element σ = (2, 1, 3) ∈ G, the group action
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on every element in X is

(2, 1, 3) · 1 = 2,

(2, 1, 3) · 2 = 3,

(2, 1, 3) · 3 = 1.

In the matrix form, the permutation (2, 1, 3) acts on V by

[(2, 1, 3)]X =


0 0 1

1 0 0

0 1 0

 .
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2.2 Tableaux and related combinatorics

In this section, we recall the definitions of partition and tableaux and introduce tableaux operations on

tableaux. We also explore some combinatorial statistics, which are essential in the CSPs and biCSPs that

will be discussed in the following sections.

Definition 2.2.1 (partition). A partition of n ∈ N, denoted as λ ⊢ n, is a sequence of positive integers

λ = (λ1, λ2, . . . , λk), in which
∑k

n=1 λi = n and λ1 ⩾ λ2 ⩾ · · · ⩾ λk. Let (n
a1
1 , . . . , nak

k ) denote the partition

with ai many parts of size ni for all i.

Example 5. All partitions of 3 are (1, 1, 1), (2, 1), and (3). The partition (1, 1, 1) can be denoted by (13),

and (3, 3, 2, 2) can be denoted by (32, 22).

Definition 2.2.2. A Young diagram of λ, given by λ ⊢ n, is composed of k rows of left-justified cells with

λi many cells in row i for 1 ⩽ i ⩽ k.

Example 6. The Young diagram of the partition (3, 2, 2) ⊢ 7 is shown in the following.

Definition 2.2.3 (standard Young tableau). A standard Young tableau T of shape λ with λ ⊢ n is

obtained by filling the cells in the Young diagram with each of the positive integers in [n] used exactly once

such that each column increases from top to bottom and each row increases from left to right in the diagram.

Denote the set of the standard Young tableaux with shape λ as SYT(λ).

Example 7. Given the shape (2, 1) ⊢ 3,

SY T (2, 1) =

{
1 2
3

, 1 3
2

}
.

Definition 2.2.4 (semistandard Young tableau). A semistandard Young tableau T of shape λ with

λ ⊢ n is obtained by filling the cells in the Young diagram with positive integers such that each row weakly

increases from left to right and each column strictly increases from top to bottom. The content µ of T ,

denoted by µ ⊨ n, is a sequence of positive integers µ = (µ1, µ2, . . . , µk), in which µi is equal to the number

of i’s in T . Denote the set of semistandard Young tableaux with shape λ and content µ as SSYT(λ, µ).
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Example 8. Given the shape λ = (3, 2) ⊢ 5 and content µ = (2, 2, 1),

SSY T (λ, µ) =

{
1 1 2
2 3

, 1 1 3
2 2

}
.

A combinatorial statistic is a function from a set of combinatorial objects to Z+. Charge, cocharge,

descent, and major index are combinatorial statistics on SYT and SSYT that have important connections

to CSPs.

Definition 2.2.5 (reading word). The reading word of a semistandard Young tableau T is the sequence

of numbers obtained by connecting the rows of T from the bottom row to top.

Example 9. Let T be the following semistandard Young tableau.

1 1 2
2 3
3

The reading word of T is

rw

 1 1 2
2 3
3

 = 323112.

Definition 2.2.6 (charge). Suppose T is a semistandard Young tableau whose content is a partition. We

acquire the charge on T by the following process:

1. Read the word rw(T ) from right to left.

2. Find the first 1 in the word we meet and label it with 0.

3. Every time after labeling the number k, continue to read the word until a k+1 is found. Label it with

i, where i is the number of times we’ve finished reading the whole word up to this point.

4. Repeat step 3 until the largest number in the word is labeled. Delete all labeled numbers and obtain

a new word.

5. Repeat step 1-4 until the new word we obtain in step 4 is empty. The charge on T is the sum of the

labels of the numbers in the original reading word of T .

The charge on T is denoted as ch(T ).
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Example 10. Let T be the semistandard Young tableau in Example 9 and following the process above, we

obtain the charge of T by the following steps:

1. After performing the first three steps, we obtain 302031102.

2. Deleting the labeled numbers and repeating the process, we get 311021.

3. Combining the first two steps, we get the labeled reading word of T as 302031101021.

Then

ch(T ) = ch(323112) = 0 + 0 + 1 + 0 + 0 + 1 = 2.

We also give the definitions of two statistics, descent and major index, which will be applied in a CSP in

the following discussion.

Definition 2.2.7. Given a permutation σ = σ1σ2 . . . σn, the descent set, denoted as Des(σ), is given by

Des(σ) = {i : σi > σi+1},

and the major index of the permutation is

maj(σ) =
∑

i∈Des(σ)

i.

In addition, given a standard Young tableau T , the descent set Des(T ) is given by

Des(T ) = {i : i+ 1 appears in a strictly lower row than i},

and des(T ) denotes the number of elements in the set Des(T ). The major index, maj(T ), is the sum of the

elements in Des(T ).

Example 11. For a permutation σ = 31524, the descent set Des(σ) = {1, 3} since σ1 = 3 > σ2 = 1 and

σ3 = 5 > σ4 = 2. Thus, maj(σ) = 1 + 3 = 4.

For the standard Young tableau T below, the descent set Des(T ) = {2, 3, 5}, so the descent number
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des(T ) = 3. The major index of T is maj(T ) = 2 + 3 + 5 = 10.

T =
1 2 7
3 5
4 6

Definition 2.2.8 (hook). Given any Young diagram, the hook of the cell c in (i, j), i.e. in the ith row and

the jth column, is the set of cells to the right of c in the same row or below c in the same column. The

hooklength hc is the number of cells in the hook of c.

Example 12. Given the Young diagram of the partition (3, 2, 2) ⊢ 7, the hook of the cell c in (1, 2) is shown

by dots below. In this case, the hooklength hc = 4.

· ·
·
·

Definition 2.2.9 (promotion). Given a standard Young tableau T , we acquire its promotion, denoted ∂T ,

by the following process:

1. Replace the (1, 1) cell of T by a dot.

2. When the dot is in the (i, j) cell, find x = min{T(i+1,j), T(i,j+1)}, where Ti,j is the (i, j) entry of T , and

exchange the entries of the dot and x. If only one of the (i+ 1, j), (i, j + 1) entries exists, then replace

the dot with that entry directly. Repeat this step until (i, j) is a corner, i.e. T does not contain the

cells of (i+ 1, j) and (i, j + 1).

3. We obtain the promotion ∂T by subtracting all elements of T after step 2 by 1 and replacing the dot

by the largest number in T .

Example 13. Let T =
1 2 7
3 5
4 6

, the promotion ∂T is acquired in the following:

· 2 7
3 5
4 6

→
2 · 7
3 5
4 6

→
2 5 7
3 ·
4 6

→
2 5 7
3 6
4 ·

→
1 4 6
2 5
3 7
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2.3 Cyclic sieving phenomenon

Recall that the cyclic sieving phenomenon needs three elements in the tuple: a finite set X, a finite cyclic

group G which acts on X, and a polynomial f(q) with coefficients in Z≥0. The triple (X,G, f(q)) exhibits

the cyclic sieving phenomenon (CSP) if for all g ∈ G, we have

|Xg| = f(ωg),

where Xg is the fixed point set of X and ω is a primitive root of unity with the same order as G.

For the rest of this section, we state some main results of CSPs and biCSPs involving standard Young

tableaux.

Definition 2.3.1. A q-analogue of n is defined as the polyomial

[n]q = 1 + q + q2 + · · ·+ qn−1.

Observe that when substituting q = 1, we get the integer n.

Here, we give the definition of the polynomial fλ(q). Recall that hc is the hook of a certain cell in a

given Young diagram, which is introduced in the previous section.

Definition 2.3.2 (Rhoades [7]). Given the shape λ ⊢ n, the polynomial fλ(q) is defined as

fλ(q) =
[n]q!∏
c∈λ[hc]q

.

By a result of Haiman [3], the order of ∂ as an operator on SY T (nm) divides m · n.

In 2010, Rhoades [7] discovered a cyclic sieving phenomenon connecting standard Young tableaux, its

promotion, and the polynomial fλ(q).

Theorem 2.2. Let the partition λ = (nm) for some positive integers n,m, then the triple

(
SY T (λ),Zmn, f

λ(q)
)

exhibits the cyclic sieving phenomenon, where i ∈ Zmn acts on T by i · T = ∂i(T ).
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Example 14. Consider the partition λ = (32). Then the set

SY T (λ) =

{
1 2 3
4 5 6

, 1 2 4
3 5 6

, 1 3 4
2 5 6

, 1 2 5
3 4 6

, 1 3 5
2 4 6

}
.

The promotion of each of the elements in SY T (λ) is shown below.

1 2 3
4 5 6

→ 1 2 5
3 4 6

1 2 5
3 4 6

→ 1 3 4
2 5 6

1 3 5
2 4 6

→ 1 2 4
3 5 6

1 2 4
3 5 6

→ 1 3 5
2 4 6

1 3 4
2 5 6

→ 1 2 3
4 5 6

Then ∂ acts as the following permutation of the set SY T (λ)

∂ =

(
1 2 3
4 5 6

, 1 2 5
3 4 6

, 1 3 4
2 5 6

)(
1 2 4
3 5 6

, 1 3 5
2 4 6

)
.

Observe that when ∂2 acts on SY T (λ), we have 2 fixed points:

∂2

(
1 2 4
3 5 6

)
= 1 2 4

3 5 6
and ∂2

(
1 3 5
2 4 6

)
= 1 3 5

2 4 6
.

Similarly, when ∂3 acts on SY T (λ), we get 3 fixed points. Indeed, when computing the polynomial fλ(q)

with λ = (32), so

fλ(q) =
[6]q!

[4]q · [3]q · [2]q · [3]q · [2]q · [1]q
=

[6]q · [5]q
[3]q · [2]q

= 1 + q2 + q3 + q4 + q6.

Let ω = e2πi/6. When plugging ω2 into the polynomial, fλ(ω2) = 1+ω4+ω6+ω8+ω12 = 1+ω4+1+ω2+1 = 2,

which matches the number of fixed points we obtain when ∂2 acting on SY T (λ).

In the same way, fλ(ω3) = 1 + ω6 + ω9 + ω12 + ω18 = 1 + 1− 1 + 1 + 1 = 3, which matches the number of

fixed points we obtain when ∂3 acting on SY T (λ).

Therefore, Theorem 2.3.2 holds true in our example.

Theorem 2.3 (Oh and Rhoades [5]). Let n and k be positive integers and let ω = e2πi/k, ω′ = e2πi/n, then

the triple (Zn,k,Zn × Zk, Zn,k(q, t)) exhibits the bicyclic sieving phenomenon, where

Zn,k =
{
(a1, a2, . . . , an)|{a1, a2, . . . , an} = {ω, ω2, . . . , ωk}

}
,
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and

Zn,k(q, t) =
∑

T∈SY T (n)

qmaj(T ) ·

n− des(T )− 1

n− k


q

· f shape(T )(t) · tn(λ),

where n(λ) =
∑

i(i− 1) · λi.

The cyclic group Zn acts on Zn,k by the rotation (a1, . . . , an) 7→ (a2, . . . , an, a1), and the cyclic group Zk

acts on Zn,k by (a1, . . . , an) 7→ (a1 · ω, . . . , an · ω).

Example 15. Given n = 3 and k = 2. Then ω = e2πi/2, ω′ = e2πi/3, and

Z3,2 = {(ω, ω, ω2), (ω, ω2, ω), (ω2, ω, ω), (ω, ω2, ω2), (ω2, ω, ω2), (ω2, ω2, ω)}.

Observe that the fixed points exist only when (3, 2) ∈ Z3 × Z2 acts on Z3,2, and
∣∣∣Z(3,2)

3,2

∣∣∣ = |Z3,2| = 6.

We also need to compute Zn,k(q, t). For n = 3, all possible SYTs are

T1 = 1 2 3 T2 = 1 2
3

T3 = 1 3
2

T4 =
1
2
3
.

According to the definitions of descent number and major index,

des(T1) = 0, maj(T1) = 0;

des(T2) = 1, maj(T2) = 2;

des(T3) = 1, maj(T3) = 1;

des(T4) = 2, maj(T4) = 3.

In addition,

f shape(T1)(t) =
[3]t!

[3]t!
= 1,

f shape(T2)(t) = f shape(T3)(t) =
[3]t!

[3]t · [1]t · [1]t
= [2]t = 1 + t,

f shape(T4)(t) =
[3]t!

[3]t!
= 1.
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Therefore,

Z3,2(q, t) = q0 ·
(
3− 0− 1

3− 2

)
q

· 1 · t0 + q2 ·
(
3− 1− 1

3− 2

)
q

· (1 + t) · t+ q1 ·
(
3− 1− 1

3− 2

)
q

· (1 + t) · t

+ q3 ·
(
3− 2− 1

3− 2

)
q

· 1 · t3

=

(
2

1

)
q

+ q2 ·
(
1

1

)
q

· (t+ t2) + q ·
(
1

1

)
q

· (t+ t2) + q3 ·
(
0

1

)
q

· t3

= (1 + q) + q2 · (t+ t2) + q · (t+ t2) + 0

= 1 + q + qt+ qt2 + q2t+ q2t2

For q = (ω′)3 = 1 and t = ω2 = 1,

Z3,2(1, 1) = 1 + 1 + 1 · 1 + 1 · 12 + 12 · 1 + 12 · 12 = 6.
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Chapter 3

Minimum degree CSP for

m-surjective functions

In [6], Reiner, Stanton, andWhite proposed and proved a condition that needs to hold for a triple (X, f(q), Cn)

to exhibit cyclic sieving phenomenon, which is shown below.

Proposition 3.1 (Reiner-Stanton-White). A triple (X, f(q), Cn) exhibits the cyclic sieving phenomenon if

and only if

f(q) =

n−1∑
ℓ=0

aℓq
ℓ mod qn − 1,

where aℓ = # Cn-orbits of X for which the order of the stabilizer subgroup of an element of that orbit divides

ℓ.

In this chapter, we will define m-surjective functions and consider different cases of a specific m-surjective

function so that the degree of the polynomial can be minimized and the CSP still holds. We will compute

these polynomials for some sets Z
(m)
n,k by finding the orbit sizes.

Definition 3.0.1. Define a function f : [n] → [k] for some integers n and k. We say the function f is

m-surjective if
∣∣f−1(i)

∣∣ ≥ m ∀ i ∈ [k].

Definition 3.0.2. The set Z
(m)
n,k is constructed by the following:

Z
(m)
n,k =

{
(a1, a2, . . . , an)|{a1, a2, . . . , an} = {ω, ω2, . . . , ωk} and each ωi appears at least m times ∀ 1 ≤ i ≤ k

}
.

17



According to the definition 3.0.1, Z
(m)
n,k is in bijection with m-surjective functions.

Example 16. When n = 5, k = 2, and m = 2, then the set Z
(2)
3,2 is

{(ω, ω, ω2, ω2, ω2), (ω, ω2, ω, ω2, ω2), (ω, ω2, ω2, ω, ω2), (ω, ω2, ω2, ω2, ω), (ω2, ω, ω, ω2, ω2),

(ω2, ω, ω2, ω, ω2), (ω2, ω, ω2, ω2, ω), (ω2, ω2, ω, ω, ω2), (ω2, ω2, ω, ω2, ω), (ω2, ω2, ω2, ω, ω),

(ω2, ω2, ω, ω, ω), (ω2, ω, ω2, ω, ω), (ω2, ω, ω, ω2, ω), (ω2, ω, ω, ω, ω2), (ω, ω2, ω2, ω, ω),

(ω, ω2, ω, ω2, ω), (ω, ω2, ω, ω, ω2), (ω, ω, ω2, ω2, ω), (ω, ω, ω2, ω, ω2), (ω, ω, ω, ω2, ω2)}.

Definition 3.0.3. The cyclic group Zn acts on the set Z
(m)
n,k by rotating the positions (a1, a2, . . . , an) to

(a2, a3, . . . , an, a1).

Zn,k is a special case of Z
(m)
n,k when m = 1. In other words, Z

(m)
n,k is a generalization of Zn,k. These sets

are motivated by work of Griffin [2].

Lemma 3.1. For ℓ ̸= 1, #
(
Z

(m)
n,k

)[ℓ]

̸= 0 if and only if
⌊
a
k

⌋
≥ m·a

n , where a = gcd(ℓ, n).

Proof. Observed that #
(
Z

(m)
n,k

)[ℓ]

= #
(
Z

(m)
n,k

)[a]

for a = gcd(ℓ, n), so it suffices to prove the lemma when

ℓ|n.

For ℓ|n, let n = ℓ · d for some integers d. When [ℓ] acts on Z
(m)
n,k , and the fixed points are denoted as

(
Z

(m)
n,k

)[ℓ]

=
{
(a1, a2, . . . , an) ∈ Z

(m)
n,k |ai = aj for i ≡ j mod ℓ

}
.

In the backward direction, suppose
⌊
ℓ
k

⌋
≥ m·ℓ

n , then ⌊ ℓ
k ⌋ · d ≥ m. Let (a1, . . . , an) be defined by

a1 = ω, a2 = ω2, . . . , aℓ = ωℓ = ωℓ mod k,

aℓ+1 = ω, aℓ+2 = ω2, . . . , a2ℓ = ω2ℓ = ω2ℓ mod k,

...
...

...

a1+(d−1)ℓ = ω, . . . an = adℓ = ωdℓ mod k,

so ai+jℓ = ωi for 0 < i ≤ ℓ and 0 ≤ j ≤ d− 1.

Then we have d rows and ℓ columns, and all elements in the same column are equal to the same ωi for

some 1 ≤ i ≤ k. For each i, ωi appears at least ⌊ ℓ
k ⌋ · d times, and given that ⌊ ℓ

k ⌋ · d ≥ m, ωi appears at least
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m times for all i. (a1, . . . , an) ∈
(
Z

(m)
n,k

)[ℓ]

, so #
(
Z

(m)
n,k

)[ℓ]

̸= 0.

Conversely, suppose that #
(
Z

(m)
n,k

)[ℓ]

̸= 0, there exists some a⃗ = (a1, . . . , an) such that (a1, . . . , an)
[ℓ] =

(a1+ℓ, a2+ℓ, . . . , an, a1, a2, . . . , aℓ) = (a1, . . . , an).

Therefore, a1 = a1+ℓ, a2 = a2+ℓ, . . . , so put all equally ai into one set for all i, and we have ℓ many sets

and each contains d many elements.

Case 1: d|m. Then m = d ·q for some integer q. If there exists a⃗ ∈
(
Z

(m)
n,k

)[ℓ]

, then each of the ω1, . . . , ωk

appears at least m times with m = d · q.

Since each set contains d many elements, each of the ω1, . . . , ωk appears in at least q sets, which implies

ℓ ≥ k · q, i.e. ℓ
k ≥ q.

Since q is an integer, then ⌊ ℓ
k ⌋ ≥ q = m

d , i.e. ⌊
ℓ
k ⌋ · d ≥ m.

Case 2: d ̸ | m. Then m = d · q + r for some integers q, r such that 0 < r < d.

If there exists a⃗ ∈
(
Z

(m)
n,k

)[ℓ]

, then each of the ω1, . . . , ωk appears at least m times, i.e. appears at least

(d · q + r) many times.

Since each set contains d many elements, each of the ω1, . . . , ωk appears in at least (q + 1) sets.

Thus, ℓ ≥ k · (q + 1), which implies ℓ
k ≥ (q + 1).

Since (q + 1) is an integer, then ⌊ ℓ
k ⌋ ≥ (q + 1) > m

d , which implies ⌊ ℓ
k ⌋ · d > m.

Combining two cases, we have ⌊ ℓ
k ⌋ · d ≥ m.

Corollary 3.1. If gcd(ℓ, n) = 1 and ℓ > 1, or if ℓ = 1 and k > 1, then #
(
Z

(m)
n,k

)[ℓ]

= 0.

Proof. Suppose gcd(ℓ, n) = 1 and ℓ ̸= 1, then 0 =
⌊
ℓ
k

⌋
≥ m

n ≥ 0. By lemma 3.1, #
(
Z

(m)
n,k

)[ℓ]

= 0.

On the other hand, suppose ℓ = 1 and k > 1. Observed that the fixed points exist only when

(α1, . . . , αn) = (α2, . . . , αn, α1), which implies that all αi are the same. This is impossible since k > 1, i.e.

we have more than one ωi and each of which appears at least m times in the tuple. Thus, #
(
Z

(m)
n,k

)[1]

= 0

in this case.

Theorem 3.2. Let k,m, n be positive integers with n > 1. If k is greater than all proper divisors of n,
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then

(
Z

(m)
n,k , Zn, [n]q ·

#
(
Z

(m)
n,k

)
n

)
exhibits the cyclic sieving phenomenon, where Zn acts on Z

(m)
n,k by rotation

(a1, . . . , an) 7→ (a2, . . . , an, a1).

Proof. Let f(q) = [n]q ·
#
(
Z

(m)
n,k

)
n . We need to show that #

(
Z

(m)
n,k

)[ℓ]

= f(ζℓ) for all ℓ, where ζ = exp
(
2πi
n

)
.

It suffices to check for 0 ≤ ℓ < n.

Case 1: 1 < ℓ < n.

Since k is greater than all proper divisors of n, then k > gcd(ℓ, n), which implies that
⌊
gcd(ℓ,n)

k

⌋
= 0.

By lemma 3.1, since 0 =
⌊
gcd(ℓ,n)

k

⌋
< m·gcd(ℓ,n)

n , then
(
Z

(m)
n,k

)[ℓ]

= 0 for all 1 < ℓ < n.

Also, since [n]q = (q − ζ) · (q − ζ2) · · ·
(
q − ζn−1

)
, then f(ζℓ) = 0 for all 1 < ℓ < n.

Thus, #
(
Z

(m)
n,k

)[ℓ]

= 0 = f(ζℓ) for all 1 < ℓ < n.

Case 2: ℓ = 1.

Since we are assuming k is greater than all proper divisions of n, then k > 1. By corollary 3.1,

#
(
Z

(m)
n,k

)[1]

= 0 for ℓ = 1 and k > 1.

Also, f(ζ) = 0 since ζ is a root of [n]q.

Thus, #
(
Z

(m)
n,k

)[1]

= 0 = f(ζ) in this case.

Case 3: ℓ = 0.

Notice that

#
(
Z

(m)
n,k

)[0]

= #Z
(m)
n,k = [n]1 ·

#Z
(m)
n,k

n
= f(1) = f(ζ0),

so #
(
Z

(m)
n,k

)[ℓ]

= f(ζℓ) holds for ℓ = 0.

We claim that the number
#
(
Z

(m)
n,k

)
n is an integer. Indeed, when Zn acts on Z

(m)
n,k , let xi be representatives

of distinct orbits for i = 1, . . . ,m, then #Z
(m)
n,k =

∑
i #Orb(xi). According to the Orbit-Stabilizer theorem,

#Zn = #Orb(xi) ·#Stab(xi). In Case 1 and Case 2, we conclude that
(
#Z

(m)
n,k

)[ℓ]

= 0 for ℓ = 1, . . . , n−1,

which implies that there is no stabilizer of all x ∈ Z
(m)
n,k for ℓ = 1, . . . , n − 1. Therefore, for all x ∈ Z

(m)
n,k ,

Stab(x) = {[0]}, i.e. #Stab(xi) = 1. Since #Zn = n, then #Orb(xi) = n for all i = 1, . . . ,m, which follows

that #Z
(m)
n,k = n ·#Orb(xi). Hence, [n]q ·

#
(
Z

(m)
n,k

)
n is a polynomial with integer coefficients.

Thus, the triple exhibits the CSP.
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The Theorem 3.2 can be proved by Proposition 3.1 as well.

Proof. Since k is greater than all proper divisors of n, then all orbits of Cn acting on Z
(m)
n,k have order n,

and all stabilizer subgroups have order 1. Thus,

aℓ = # of Cn-orbits s.t. the stabilizer-order divides ℓ

=

∣∣∣Z(m)
n,k

∣∣∣
n

According to Proposition 3.1,

f(q) =

n−1∑
ℓ=0

aℓq
ℓ mod qn − 1

=

n−1∑
ℓ=0

∣∣∣Z(m)
n,k

∣∣∣
n

· qℓ

=

∣∣∣Z(m)
n,k

∣∣∣
n

· [n]q

and the triple
(
Z

(m)
n,k , f(q), Cn

)
exhibits CSP.

Example 17. For n = 4, k = 2, and m = 1, then the CSP does not hold since k isn’t greater than all proper

divisors of n.

Indeed, since #Z
(1)
4,2 = 14, then f(q) = [n]q ·

#
(
Z

(1)
4,2

)
n = [4]q · 14

4 , which is not an integer, so the CSP

cannot hold.

This example shows that the hypothesis in the Theorem 3.2 is necessary.

The computation of aℓ in other cases and the examples of bicyclic sieving phenomenon for Z
(m)
n,k are left

as future work.
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