1) a) Show that if $\lim _{n \rightarrow \infty} s_{n}=\infty$, then $\lim _{n \rightarrow \infty} \frac{1}{s_{n}}=0$.
b) Show that if $\lim _{n \rightarrow \infty} s_{n}=0$ and $s_{n}>0$ for all n , then $\lim _{n \rightarrow \infty} \frac{1}{s_{n}}=\infty$.
2) Define $\left\{s_{n}\right\}$ by $s_{n+1}=\sqrt{5+s_{n}}$ for $n \geq 1$ and $s_{1}=\sqrt{5}$.
a) Show that $\left\{s_{n}\right\}$ converges.
b) Find $\lim _{n \rightarrow \infty} s_{n}$.
3) Define $\left\{s_{n}\right\}$ by $s_{n+1}=\frac{1}{4} s_{n}+15$ for $n \geq 1$ and $s_{1}=2$.
a) Show that $\left\{s_{n}\right\}$ converges.
b) Find $\lim _{n \rightarrow \infty} s_{n}$.
4) Use $\# 2$ on Problem sheet 4 and the identity $a^{x}=e^{x \ln a}$ to show the following: If $\lim _{n \rightarrow \infty} s_{n}=s$ where $s_{n}>0$ for all n and $s>0$ and $\lim _{n \rightarrow \infty} t_{n}=t$, then $\lim _{n \rightarrow \infty} s_{n}^{t_{n}}=s^{t}$.
5) Show that every nonempty subset of \mathbb{R} which is bounded below has a greatest lower bound as follows:

Let E be a nonempty subset of \mathbb{R} which is bounded below, and let $L=\{l \in \mathbb{R}: l$ is a lower bound for E$\}$.
a) Show that L is bounded above. Why can you conclude from this that $\sup L$ exists?
b) Show that $\inf E=\sup L$.

