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to extend the integral to the case a > b. In particular, if f(x) is integrable 5.1.2.

and nonpositive on [a, b], then the arca of the‘ region bounded by the curves
y=fx), y=0 x=4a, and x = bis given by [ f(x)dx.

In the next section we shall use the machinery of upper and lower sums to
prove several familiar theorems about the Riemann integral. We close this sec-
tion with one more result which reinforces the connection between integration .
and area.

5.16 Theorem. If f(x) =« is constant on {a, b), then

b
fx)dx =a - a).

a

Proof. By Theorem 5.10, f is integrable on [a, b]. Hence, it follows from
Theorem 5.15 and Remark 3.5 that

b b
/f(x)dx:(U)f f(x)dx:il}l}fU(f,P)::a(b——a). |

EXERCISES

5.1.0. Suppose thata < b < c. Decide which of the following statements are
true and which are false. Prove the true ones and give counterexamples
for the false ones. 5.1.3.

a) If f is Riemann integrable on [a, b], then f is continuous on [a, b}.

b) If | f| is Riemann integrable on [a, b}, then f is Riemann integrable
on [a, b].

c) Forall bounded functions f : [a,b] = R,

b b b
(L)f fx)dx S[ f(x)dx < (U)f f(x)dx. 514
a a a
d) If f is continuous on [a.b) and on [b, ], then f is Riemann inte-
grable on [a, c].

5.1.1 For each of the following, compute U(f, P), L(f, P), and f02 fx)dx,

where
|
P = {O,—,1,2}.
2

Find out whether the lower sum or the upper sum is a better approxi-
mation to the integral. Graph f and explain why this is so.

a) f(x) = X3
b) f(x)=3—x?
¢) f(x) =sin(x/5)

5.15.
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5.1.2. a) Prove that for each n € N,

e
~ .
. P,,:=[i j=01 n}
n
to
e is a partition of [0, 1].
on b) Prove that a bounded function f is integrable on [0, 1] if
(%) Iy = lim L(f, P,) = lim U(f, Pa),
n—oo n—»0o0
in which case fol f(x)dx equals Iop.
c) For each of the following functions, use Exercise 1.4.4 to find for-
mulas for the upper and lower sums of f on Py, and use them to
n compute the value of fol f(x)dx.
@) f)y=x
. ) fw=4
0 0<x<l/2
e V) f(x)—[l j2<x<l
s

5.13. Let E = {1/n: n € N}. Prove that the function

E
f(x):‘l X €

0 otherwise

w

is integrable on [0, 1]. What is the value of fol f(x)dx?

. This exercise is used in Section *14.2. Suppose that a < b and that
f :la, bl = Ris bounded.

a) Prove thatif f is continuous at xo € [a, b] and f(xo) # 0, then

b
@) f ()l dx > 0.

b) Show that if f is continuous on {a, b], then f: | f(x)|dx = 0if and
only if f(x) = 0 for all x € [a, b].

¢) Does part b) hold if the absolute values are removed? If it does,
prove it. If it does not, provide a counterexample.

5.1.5. Suppose thata < b and that f : [a, b] — R s continuous. Show that

/C fx)dx=0
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for all ¢ € [a, b] if and only if f(x) = 0 for all x € [a, b]. (Compare with
Exercise 5.1.4, and notice that f need not be nonnegative here.)

5.1.6. Let f be integrable on [a, b} and E be a finite subset of [a, b]. Show that
if g is a bounded function which satisfies g(x) = f(x) forall x € [a, P\E,
then g is integrable on [a, b] and

b b
fg(x)dx=f fx)dx.

. This exercise is used in Section 12.3. Let f, ¢ be bounded on [a, b].
a) Prove that

b b b
(U)/ (fx)+gx)dx = (U)f fo) dx+(U)f g(x)dx
and
b b b
(L)f (f(x)+g(x))dx = (L)f fx) dx+(L)/ g(x) dx.

b) Prove that

b c b
(U)f f(x)dx=(U)f f(X)dx+(U)/ f(x)dx

and

b c b
(L) f £ dx = (L) f £y dx + (L) f fx) dx

fora <c <b.
. This exercise is used in Sections *5.5, 6.2, and *7.5.

a) If f is increasing on [a, b} and P = {xo,...,X,} is any partition of
[a, b], prove that

S M) —mj () Axj < (FB) = f@) 1P

j=!

b) Prove thatif f is monotone on [a, b], then f is integrable on [a, b].
[Note: By Theorem 4.19, f has at most countably many (i.e., relatively
few) discontinuities on [a, b]. This has nothing to do with the proof of
part b), but points out a general principle which will be discussed in
Section 9.6.]
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5.19. Leta < band 0 < ¢ < d be real numbers and f : [a, b] = [¢,d]. If fis

Riemann integrable on [a, b], prove that JF is Riemann integrable on
[a, b].

5.1.10. Let f be bounded on a nondegenerate interval [a, b]. Prove that f is

integrable on [a, b] if and only if given ¢ > 0 there is a partition Pe of
[a, b] such that

P D> P, implies |[U(f, P)— L(f, P)l <e.
5.2 RIEMANN SUMS

There is another definition of the Riemann integral frequently found in elemen-
tary calculus texts.

5.17 Definition.

Let f :[a,b] = R.

i) A Riemann sum of f with respect to a partition P = {xo, ..., Xn} of [a, b]
generated by samples ¢ € [xj1, x;] is a sum

S(f, P.tj) =Y f(t)) Axj.
j=1

ii) The Riemann sums of f are said to converge to I(f) as ||P|| — 0if and
only if given ¢ > O there is a partition P of [a, b] such that

P ={(xo,...,%n} 2 P. implies IS, Pty = 1(H)| <&

for all choices of ¢; € [xj-1,x;1, j = 1,2,...,n. In this case we shall use
the notation

1(f)= fim S(f Pt = lim 0}; £ty Ax;.

The following result shows that this definition of the Riemann integral is the
same as the one using upper and lower integrals.

5.18 Theorem. Leta,b € Rwitha < b, and suppose that f : [a,b] = R. Then
fis Riemann integrable on [a, b] if and only if

n

I(f)= lim > f(t)) Bx;

fPl—>0%
j=l1

exists, in which case [(f) = ff fix)dx.

i A B R
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EXERCISES

'5.2.0.

5.2.1.

5.2.2.

5.2.3.

Suppose that a < b. Decide which of the following statements are true
and which are false. Prove the true ones and give counterexamples for
the false ones.

a) If f and g are Riemann integrable on [a, b}, then f — g is Riemann
integrable on [a, b].

b) If f is Riemann integrable on [a, b] and P is any polynomial on R,
then P o f is Riemann integrable on [a, b].

c) If f and g are nonnegative real functions on [a, b}, with f continuous
and g Riemann integrable on [a, b], then there exist xp. x| € [a, D]
such that

b b
f fx)gx)dx = f(xo)/ g(x) dx.

d) If f and g are Riemann integrable on [a, b] and f is continuous, then
there is an xg € [a, b] such that

b b
F()g(x) dx = f(x0) f o(x) dx.

Using the connection between integrals and area, evaluate each of the
following integrals.

2
a) / lx +1]dx

-2

2
b) / (lx + 1] + |x]) dx
-2
a N
¢) / Va?—xtdx, a>0

2
d) f (5+vV2x +x¥dx
0

a) Suppose thata < bandn € Niseven. If f is continuous on [a, b] and
fab f(x)x"dx = 0, prove that f(x) =0 for at least one x € |[a, b].

b) Show that part a) might not be true if n is odd.

¢) Prove that part a) does hold for odd #» whena + b # 0.

Use Taylor polynomials with three or four nonzero terms to verify the
following inequalities.

I
a) 0.3095 < / sin(x?) dx < 0.3103
0

(The value of this integral is approximately 0.3102683.)

5.24..

525,

5.2.6.

5.2.7.

5.2.8.
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! 2
b) 1.4571 </ e' dx < 1.5704
0

(The value of this integral is approximately 1.4626517.)

5.2.4. Suppose that f : [0, c0) — [0. c0) is integrable on every closed interval
[a, b] C [0, 00). If

F(x) = / e‘»vzf(y) dy, x €]0,00),
0

then there is a function g : [0,00) — [0, c0) such that F(x) =
f;(x) f(y)ydy forall x € [0, ).

5.2.5. Prove that if f is integrable on [0, 1] and B > 0, then

1/nP
lim n"‘/ f)dx=0
0

n—00
foralla < 8.
5.2.6. a) Suppose that g, > 0 is a sequence of integrable functions which
satisfies

b
lim f gn(x)dx = 0.

n—>0Q F;

Show thatif f : [a, b] — Ris integrable on [a, b], then

b
lim / SxX)gn(x)dx = 0.
n—»00 a

b) Prove that if f is integrable on [0, 1], then

i
lim / " f(x)dx = 0.
n—> 00 0

5.2.7. Suppose that f is integrable on [a,b], that xop = a, and that x, is a
sequence of numbers in [a, b] such that x, t+ b asn — oo. Prove that

Kk+1

b n
/ fodx = lim )" f f(x) dx.
a ””‘x’kzo X

k

5.2.8. Let f be continuous on a closed, nondegenerate interval [a, b] and set

M= sup |f(x)l.

x€la,b]

A 0 AR TN i T

AN i 5 O AT SR S 50 i AR R S 5 11722

5 e SRR N S AR LA AR S £



152 Chapter 5 Integrability on R

a) Prove that if M > 0 and p > 0, then for every ¢ > 0 there is a I;:'O“)’Vf-]
nondegenerate interval [ C [a, b] such that sho

b '
(M —e)P|l} < lf ()17 dx < MP(b —a).

a

b) Prove that : ' (see L
b l/p ‘ implie
lim (/ L F )P dx) = M. ,
P00 \Jau
5§29, Let f : [a,b] > R, a=x) < x} < - <Xy = b, and suppose that
f (xx+) exists and is finite fork =0, 1,...,n— 1 and f(x¢—) exists and is
finite for k = 1, ..., n. Show that if f is continuous on each subinterval and tt
(xk—1, Xx), then f is integrable on [a, b] and
b n Xk
/ f(x)dx=2f f(x)dx.
a k| ¢ Fh—1
5.2.10. Prove thatif f and g are integrable on [a, b], thenso are f V g and fAg There

(see Exercise 3.1.8).
5.2.11. Suppose that f : [a,b] = R.

a) If f is not bounded above on [a, b], then given any partition P of
[a,b]and M > 0, there exist¢; € [x;j—y, x;]such that S(f, P,tj) > M.
b) If the Riemann sums of f converge to a finite number 1(f), as || P|| Since
— 0, then f is bounded on [a, b).

5.3 THE FUNDAMENTAL THEOREM OF CALCULUS

Let f be integrable on [a, b] and F(x) = j; f(t)dt. By Theorem 5.26, F is
continuous on [a; b]. The next result shows that if f is continuous, then F is

This
continuously differentiable. Thus “indefinite integration” improves the behav- i)
ior of the function. partit
5.28 Theorem. [FUNDAMENTAL THEOREM OF CALCULUS].
Let [a, b] be nondegenerate and suppose that f : [a,b] > R
i) If fis continuous on [a, b] and F(x) = [ f(t)dt, then F € C'la, b] and
d X
—/ ftydt :==F'(x) = f(x) for a1
dx Ja choos
for each x € la, b]. ' follov
i) Iffis differentiable on [a, b and f' is integrable on [a, b], then
X
[ rwa= - s@ I
a

for each x € [a, b].
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EXERCISES

5.3.0.

5.3.1.

Suppose that a < b. Decide which of the following statements are true
and which are false. Prove the true ones and give counterexamples for
the false ones.

a) If f is continuous and nonnegative on [a, bl and g : [¢, b] = [a, b]is
differentiable and increasing on [a, b], then

g(x)
F(x) = / f() dt

is increasing on [a, b].
b) If f and g are differentiable on {a, b}, if f and g’ are Riemann inte-
grable on [a, b], and if f(a) = 0 but g is never zero on |a, b], then

N N LN e G4
f(x)_fa g(t)<g(t)>dtJr . & a

for all x € [«, b].
¢) If f and g are differentiable on [a, b}, and if f’ and g’ are Riemann
integrable on [a, b}, then

b b
f f’(x)g(x)dx+/ fx)gxydx=0

if and only if f(a)g(a) = f(b)g(b).
d) If f and g are continuously differentiable on [a, b], and if / is contin-
uous on [a, b], then

8B b
[ s = [ mstreomgsns i
8 a) a

If f: R > Ris continuous, find F '(x) for each of the following func-
tions.

1
2) F(x) =/’ F@) dt
x3
b) F(x):/‘q £t dt
o) F(x):/" Ctf() dr
0

d) F(x) = ] F(t —x)dt
8]

5.3.3.

5.34.

.
e N

oy

fi
i1

1
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5.3.3.

5.3.4.

Section 5.3

. Suppose that f is nonnegative and continuous on |1, 2] and that
D) . . .
'/[ 2 dy = 5 4+ k2 for k = 0.1,2. Prove that cach of the follow-

ing statements is correct.

a)

C)

Suppose that f is integrable on [0.5, 2] and that

1 .
/ .\""f(x) dy = /
0.5 1

The Fundamental Theorem of Calculus

i
/ F(Vxdx <20

!

! I
/ f <—;> dx <
V22 AT

|
/ e+ Ddx=2
0

s

2

2
K F) dx 4262 =34+ k2

161

for k = 0,1,2. Compute the exact values of each of the following

integrals.

a)

b)

NEYY)
/

|
f A2+ ) dx

0

3

sl (\/1 -x2) dx

Suppose that f and g are differentiable on {0, ¢] and that f’ and g’ are

integrable on [0, e].

a) If [{ f(x)/xdx < f(e), prove that

/ f'(x)logx dx > 0.
|

b) If f(0) = f(1) =0, prove that

1
/ e (flx)+ f(x)dx =0.
0

c) 0 e {f(0), gO}N{f(e), gle)}, prove that

/ fg'(x)dx = —f 2O f(x) dx.
0 0




162 Chapter 5
5.3.5.

5.3.6.
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Use the First Mean Value Theorem for Integrals to prove the following
version of the Mean Value Theorem for Derivatives. 1f f € C'la,b],
then there is an xg € [a, b] such that

fb) = fla) = (b ~a)f (xo).

If f is continuous on [a, b} and there exist numbers o # 8 such that

c b
a/ f(x)dx+ﬂf fx) dx =0

holds for all ¢ € (a, b), prove that f(x) = 0 for all x € [a, b].
This exercise is used in Sections 5.4 and 6.1. Define L : (0, 00) — R by

X
L(x) = Ci{
1 ¢
a) Prove that L is differentiable and strictly increasing on (0, c0), with
L'(x) = 1/x and L(1) = 0.
b) Prove that L(x) — 00 as x — 00 and L(x) - —oo as x — 0+. (You
may wish to prove

" dr ‘ n
wn=3 [ Xt -2) =3
k=1 k=1

for alln € N.)

¢) Using the fact that (x9)" = gx9~! for x > 0 and g € Q (see Exer-
cise 4.2.7), prove that L(x7) = qL(x) forallg € Qand x > 0.

d) Prove that L(xy) = L(x) + L()) for all x, y € (0, 00).

e) Suppose that e = limyco(1 + 1/ n)" exists. (It does—see Exam-
ple 4.22.) Use 'Hopital’s Rule to show that L(e) = 1. [L(x) is the
natural logarithm function log x.]

. This exercise was used in Section 4.3. Let E = L~!, where L is defined

in Exercise 5.3.7.

a) Use the Inverse Function Theorem to show that E is differentiable
and strictly increasing on R with E'(x)=E(x), E(0)=1,and E(1)=e.

b) Prove that E(x) — coasx — o0 and E(x) —> 0asx — —o0.

¢) Prove that E(xq) = (E(x))? and E(q) = ¢4 forallg e Qand x € R.

d) Prove that E(x + y) = E(x)E(y) for allx,y e R.

e) For each o € R define ¢* = E(a). Let x > 0 and define x* =
e?108% .= E(qL(x)). Prove that 0 < x < y implies x* < y® fora >0
and x* > y® for o < 0. Also prove that

_ 1
x0T = x%xP, x ¥ =—, and %) =ax*”

xa

1

foralla, 8 € Rand x > 0.

5.3.9.

5.3.10.

5.3.11.

5.3.12.
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5.3.9. Suppose that f : [a,b] — R is continuously differentiable and 1-1 on
[a, b]. Prove that

: b fb) .
f f(x)dx+f fT (x)dx =bf(b) —af(a).
a f(a) '

§.3.10. Suppose that ¢ is C! on [a, b] and f is integrable on [c, d] := ¢[a, b]. If
¢’ is never zero on [a, b], prove that f o ¢ is integrable on [a, b].

5.3.11. Letq € Q. Suppose thata < b,0 < ¢ < d, and that f : [a,b] — [c, d].
If f is integrable on [, b], then prove that

(/x fi@ dt) = f(x)

for all x € [a, b).
5.3.12. For each n € N, define

emn\/"
ap = (E—;) .
Prove that a,, — 4/e.

. 5.4 IMPROPER RIEMANN INTEGRATION

To extend the Riemann integral to unbounded intervals or unbounded func-
tions, we begin with an elementary observation.

5.37 Remark. Iffis integrable on [a, b], then

b d
[ rovsm i s [ 0)

Proof. By Theorem 5.26,

F(x)=/x f@) dt

is continuous on [a, b]. Thus

b
f fx)dx=F(b)—F(a) = lim ( lim (F(d) — F(c)))

- i, s [ 1) :

This leads to the following generalization of the Riemann integral.
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To show that sin x/x is not absolutely integrable on [1, 00), notice that

nmw . n k]‘[ "

sin x
f | sin x| deZ/ | ldx
1 X k- X

k=2

i 1 km
> — | sinx| dx
k=2 krm /;k—l)n

"2 21
_kzﬂkn—ngk

for each n € N. Since

n 1 k+11 n+11
—>E —dx = —dx =log(n+1)—log2 — o0
X 2 X

as n — 00, it follows from the Squeeze Theorem that

. nT | sin x|
lim - dx = 0.
1

n—00 x

Thus, sin x/x is not absolutely integrable on [1, 00).

EXERCISES

5.4.0. Suppose that a < b. Decide which of the following statements are true
and which are false. Prove the true ones and give counterexamples for

the false ones.

a) If f is bounded on [, b], if g is absolutely integrable on (a, b), and
if | f(x)| < g(x) forall x € (a, b), then f is absolutely integrable on

(a, b).

b) Suppose that 4 is absolutely integrable on (a, b). If f is continuous on
(a, b), if g is continuous and never zero on [a, b, and if | f (x)| < h(x)

for all x € [a, b], then f/g is absolutely integrable on (a, b).

¢) If f : (a,b) — [0,00) is continuous and absolutely integrable on
(a, b) for some a, b € R, then /T is absolutely integrable on (a, b).
d) If f and g are absolutely integrable on (a, b), then max{f, g} and

min{ f, g} are both absolutely integrable on (a, b).

. 5.4.1. Evaluate the following improper integrals.

x

1

a) / X dx
i

x3

0 3
b) f xZe* dx
-0

542

5.4.3.

5.4.4.

54.5.

5.4.6.

54.7.

o
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5.4.7.

5.4.2.

5.4.3.

5.44.

5.4.5.

5.4.6.
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/”/2 cosy
: N R
¥ Jo Jsin ¥
g
d) / log x dx
, Jo

For each of the following, find all values of p R for which f is improp-
erly integrable on /.

a) f(x)y=1/x" [ =(l,00)

b) fxy=1/x", 1 =(0,1

¢) f(x)=1/(xloglx), I = (e,00)

d) f)y=1/(1+x"), I =(0,00)

e) f(x)=log"x/x", where a > Ois fixed, and / = (I, 00)

Let p > 0. Show that sinx/x” is improperly integrable on [1, c0) and
that cos x/ log? x is improperly integrable on [e, 00).
Decide which of the following functions are improperly integrable on /.

a) f(x)=sinx, = (0,00)

b) fo)=1/x> I=[-1,1]

¢) fx) =x"'sin(x™). I =(1,00)
d)y f(x)=log(sinx), I =(0,1)

e) f(x) = (1 —cosx)/x% I=(0,00)

Use the examples provided by Exercise 5.4.2b to show that the product

of two improperly integrable functions might not be improperly inte-
grable.

Suppose that f, g are nonnegative and locally integrable on [a, b)
and that

fx)
= lim
x—>b— g(x)
exists as an extended real number.

L:

a) Show thatif 0 < L < oo and g is improperly integrable on [a, b), then
sois f.

b) Show that if 0 < L < oo and g is not improperly integrable on [a, b),
then neitheris f.

a) Suppose that f is improperly integrable on [0, cc). Prove thatif L =
limy o0 f(x) exists, then L = 0.
b) Let

1 n<x<n+2", neN
0 otherwise.

flx)y=

Prove that f is improperly integrable on [0, 00) but limy_ s f(x)
does not exist.
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5.4.8. Prove thatif f is absolutely integrable on [1, 00), then

lim f f(x")dx=0.
1

n—>o0

5.4.9. Assuming e = limy—co Yk=o 1/K! (s€€ Example 7.45), prove that

1 x0
lim (—/ x"e™* dx) = 1.
n—>o0 \ n! i

/2 . 2
/ e--asmx dx < =
0 a

5.4.10. a) Prove that

foralla > 0.
b) What happens if cos x replaces sinx?

*5.5 FUNCTIONS OF BOUNDED VARIATION

This section uses no material from any other enrichment section.

In this section we study functions which do not wiggle too much. These
functions, which play a prominent role in the theory of Fourier series (see
Sections *14.3 and *14.4) and probability theory, are important tools for
theoretical as well as applied mathematics.

Let ¢ : [a, b] — R. To measure how much ¢ wiggles on an interval [a, b], set

Vg, P) =Y o)) —oxj-l

j=1
for each partition P = {x0, X1y -y Xn} of [a, b]. The variation of ¢ is defined by
Var(¢) := sup{V (¢, P) : P is a partition of [a, b]}. 19)

5.50 Definition.

Let [a, b] be a closed, nondegenerate interval and ¢ : [a,b] — R. Then ¢ is

said to be of bounded variation on [a, b] if and only if Var(¢) < oo.

The following three remarks show how the collection of functions of bounded
variation is related to other collections of functions we have studied.

5.51 Remark. If¢ € C'[a, b}, then ¢ is of bounded variation on [a, bl. However,
there exist functions of bounded variation which are not continuously differen-
tiable.

Proof. Let P = {xp,x1,..., xn) be a partition of [a, b]. By the Extreme Value
Theorem, there isan M > 0 such that |¢/(x)| < M for all x € [a, b]. Therefore,
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