
The last of these equalities holds because the limit of the cross product of two vector func-
tions is the cross product of their limits if the latter exist (Exercise 32). As h approaches
zero, approaches v(t) because v, being differentiable at t, is continuous at t (Exer-
cise 33). The two fractions approach the values of du dt and dv dt at t. In short,

Proof of the Chain Rule Suppose that is a differentiable
vector function of s and that is a differentiable scalar function of t. Then a, b, and
c are differentiable functions of t, and the Chain Rule for differentiable real-valued func-
tions gives

Vector Functions of Constant Length

When we track a particle moving on a sphere centered at the origin (Figure 13.8), the posi-
tion vector has a constant length equal to the radius of the sphere. The velocity vector dr dt,
tangent to the path of motion, is tangent to the sphere and hence perpendicular to r. This is
always the case for a differentiable vector function of constant length: The vector and its
first derivative are orthogonal. By direct calculation,

is constant.

Differentiate both sides.

Rule 5 with 

The vectors and r(t) are orthogonal because their dot product is 0. In summary,rœstd
 2r¿std # rstd = 0.

rstd = ustd = vstd r¿std # rstd + rstd # r¿std = 0

 d
dt

 [rstd # rstd] = 0

ƒ rstd ƒ = c rstd # rstd = c2

>
s = ƒstd = ƒ¿stdu¿sƒstdd .

 = ds
dt

 
du
ds

 = ds
dt

 ada
ds

 i + db
ds

 j + dc
ds

 kb
 = da

ds
 
ds
dt

 i + db
ds

 
ds
dt

 j + dc
ds

 
ds
dt

 k

 d
dt

 [ussd] = da
dt

 i + db
dt

 j + dc
dt

 k

s = ƒstd
ussd = assdi + bssdj + cssdk

d
dt

 su * vd = du
dt

* v + u * dv
dt

.

>>vst + hd
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If r is a differentiable vector function of t of constant length, then

(4)r # dr
dt

= 0.

We will use this observation repeatedly in Section 13.4. The converse is also true (see
Exercise 27).

As an algebraic convenience, we
sometimes write the product of a scalar c
and a vector v as vc instead of cv. This
permits us, for instance, to write the
Chain Rule in a familiar form:

where s = ƒstd .

du
dt

= du
ds

 
ds
dt

,

y

z

x

P
r(t)

dr
dt

FIGURE 13.8 If a particle moves on a
sphere in such a way that its position r is a
differentiable function of time, then
r # sdr>dtd = 0.

Exercises 13.1

Motion in the Plane
In Exercises 1–4, r(t) is the position of a particle in the xy-plane at
time t. Find an equation in x and y whose graph is the path of the par-
ticle. Then find the particle’s velocity and acceleration vectors at the
given value of t.

1. rstd = st + 1di + st2 - 1dj, t = 1

2.

3.

4. rstd = scos 2tdi + s3 sin 2tdj, t = 0

rstd = et i + 2
9

 e2t j, t = ln 3

rstd = t
t + 1

 i + 1
t  j, t = -1>2
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Exercises 5–8 give the position vectors of particles moving along vari-
ous curves in the xy-plane. In each case, find the particle’s velocity
and acceleration vectors at the stated times and sketch them as vectors
on the curve.

5. Motion on the circle

6. Motion on the circle

7. Motion on the cycloid

8. Motion on the parabola

Motion in Space
In Exercises 9–14, r(t) is the position of a particle in space at time t.
Find the particle’s velocity and acceleration vectors. Then find the par-
ticle’s speed and direction of motion at the given value of t. Write the
particle’s velocity at that time as the product of its speed and direction.

9.

10.

11.

12.

13.

14.

In Exercises 15–18, r(t) is the position of a particle in space at time t.
Find the angle between the velocity and acceleration vectors at time

15.

16.

17.

18.

Tangents to Curves
As mentioned in the text, the tangent line to a smooth curve

at is the line that passes through
the point parallel to the curve’s velocity vec-
tor at In Exercises 19–22, find parametric equations for the line
that is tangent to the given curve at the given parameter value 

19.

20.

21.

22. rstd = scos tdi + ssin tdj + ssin 2tdk, t0 = p
2

rstd = ln t i + t - 1
t + 2

 j + t ln t k, t0 = 1

rstd = t2 i + s2t - 1dj + t3 k, t0 = 2

rstd = ssin tdi + st2 - cos tdj + et k, t0 = 0

t = t0 .
t0 .

vst0d ,sƒst0d, gst0d, hst0dd
t = t0rstd = ƒstdi + gstdj + hstdk

rstd = 4
9

 s1 + td3>2 i + 4
9

 s1 - td3>2 j + 1
3

 tk

rstd = sln st2 + 1ddi + stan-1 tdj + 2t2 + 1 k

rstd = a22
2

 tb i + a22
2

 t - 16t2b j

rstd = s3t + 1di + 23t j + t2k

t = 0.

rstd = se-tdi + s2 cos 3tdj + s2 sin 3tdk, t = 0

rstd = s2 ln st + 1ddi + t2 j + t2

2
 k, t = 1

rstd = ssec tdi + stan tdj + 4
3

 tk, t = p>6rstd = s2 cos tdi + s3 sin tdj + 4tk, t = p>2rstd = s1 + tdi + t222
 j + t3

3
 k, t = 1

rstd = st + 1di + st2 - 1dj + 2tk, t = 1

rstd = t i + st2 + 1dj; t = -1, 0,  and 1

y = x2 + 1

rstd = st - sin tdi + s1 - cos tdj; t = p and 3p>2x = t - sin t,  y = 1 - cos t

rstd = a4 cos 
t
2
b i + a4 sin 

t
2
b j; t = p and 3p>2x2 + y2 = 16

rstd = ssin tdi + scos tdj; t = p>4 and p>2x2 + y2 = 1
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Theory and Examples
23. Motion along a circle Each of the following equations in parts

(a)–(e) describes the motion of a particle having the same path,
namely the unit circle Although the path of each
particle in parts (a)–(e) is the same, the behavior, or “dynamics,”
of each particle is different. For each particle, answer the follow-
ing questions.

i) Does the particle have constant speed? If so, what is its con-
stant speed?

ii) Is the particle’s acceleration vector always orthogonal to its
velocity vector?

iii) Does the particle move clockwise or counterclockwise
around the circle?

iv) Does the particle begin at the point (1, 0)?

a.

b.

c.

d.

e.

24. Motion along a circle Show that the vector-valued function

describes the motion of a particle moving in the circle of radius 1
centered at the point and lying in the plane

25. Motion along a parabola A particle moves along the top of the
parabola from left to right at a constant speed of 5 units
per second. Find the velocity of the particle as it moves through
the point (2, 2).

26. Motion along a cycloid A particle moves in the xy-plane in
such a way that its position at time t is

a. Graph r(t). The resulting curve is a cycloid.

b. Find the maximum and minimum values of and (Hint:
Find the extreme values of and first and take square
roots later.)

27. Let r be a differentiable vector function of t. Show that if
for all t, then is constant.

28. Derivatives of triple scalar products

a. Show that if u, v, and w are differentiable vector functions of
t, then

b. Show that

(Hint: Differentiate on the left and look for vectors whose prod-
ucts are zero.)

d
dt

 ar # dr
dt

* d2r
dt2 b = r # adr

dt
* d3r

dt3 b .

 u # v * dw
dt

. 
d
dt

 su # v * wd = du
dt

# v * w + u # dv
dt

* w +

ƒ r ƒr # sdr>dtd = 0

ƒ a ƒ 2ƒ v ƒ 2
ƒ a ƒ .ƒ v ƒ

rstd = st - sin tdi + s1 - cos tdj.

y2 = 2x

x + y - 2z = 2.
s2, 2, 1d

+ cos t ¢ 122
 i - 122

 j≤ + sin t ¢ 123
 i + 123

 j + 123
 k≤ rstd = s2i + 2j + kd

rstd = cos st2di + sin st2dj, t Ú 0

rstd = scos tdi - ssin tdj, t Ú 0

rstd = cos st - p>2di + sin st - p>2dj, t Ú 0

rstd = cos s2tdi + sin s2tdj, t Ú 0

rstd = scos tdi + ssin tdj, t Ú 0

x2 + y2 = 1.

T
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29. Prove the two Scalar Multiple Rules for vector functions.

30. Prove the Sum and Difference Rules for vector functions.

31. Component Test for Continuity at a Point Show that the vec-
tor function r defined by is contin-
uous at if and only if ƒ, g, and h are continuous at 

32. Limits of cross products of vector functions Suppose
that 

and Use the determi-
nant formula for cross products and the Limit Product Rule for
scalar functions to show that

33. Differentiable vector functions are continuous Show that if
is differentiable at then it is

continuous at as well.

34. Constant Function Rule Prove that if u is the vector function
with the constant value C, then 

COMPUTER EXPLORATIONS
Use a CAS to perform the following steps in Exercises 35–38.

a. Plot the space curve traced out by the position vector r.

b. Find the components of the velocity vector dr dt.

c. Evaluate dr dt at the given point and determine the equation of
the tangent line to the curve at 

d. Plot the tangent line together with the curve over the given interval.

rst0d .
t0> >

du>dt = 0.

t0
t = t0 ,rstd = ƒstdi + gstdj + hstdk

lim
t: t0

sr1std * r2stdd = A * B.

limt:t0 r2std = B. limt:t0 r1std = A,g3stdk,
ƒ1stdi + ƒ2stdj + ƒ3stdk, r2std = g1stdi + g2stdj +r1std =

t0 .t = t0
hstdkƒstdi + g stdj +rstd =

13.2 Integrals of Vector Functions; Projectile Motion 733

35.

36.

37.

38.

In Exercises 39 and 40, you will explore graphically the behavior of
the helix

as you change the values of the constants a and b. Use a CAS to per-
form the steps in each exercise.

39. Set Plot the helix r(t) together with the tangent line to the
curve at for 1, 2, 4, and 6 over the interval

Describe in your own words what happens to the
graph of the helix and the position of the tangent line as a in-
creases through these positive values.

40. Set Plot the helix r(t) together with the tangent line to the
curve at for and 4 over the interval

Describe in your own words what happens to the
graph of the helix and the position of the tangent line as b in-
creases through these positive values.

0 … t … 4p .
2 ,1>2,b = 1>4,t = 3p>2a = 1.

0 … t … 4p .
a =t = 3p>2b = 1.

rstd = scos atdi + ssin atdj + btk

-3 … t … 5, t0 = 3
rstd = sln st2 + 2ddi + stan-1 3tdj + 2t2 + 1 k, 

t0 = p>4rstd = ssin 2tdi + sln s1 + tddj + tk, 0 … t … 4p, 

rstd = 22t i + e t j + e-t k, -2 … t … 3, t0 = 1

0 … t … 6p, t0 = 3p>2rstd = ssin t - t cos tdi + scos t + t sin tdj + t2k, 

13.2 Integrals of Vector Functions; Projectile Motion

In this section we investigate integrals of vector functions and their application to motion
along a path in space or in the plane.

Integrals of Vector Functions

A differentiable vector function R(t) is an antiderivative of a vector function r(t) on an in-
terval I if at each point of I. If R is an antiderivative of r on I, it can be shown,
working one component at a time, that every antiderivative of r on I has the form 
for some constant vector C (Exercise 41). The set of all antiderivatives of r on I is the
indefinite integral of r on I.

R + C
dR>dt = r

DEFINITION The indefinite integral of r with respect to t is the set of all
antiderivatives of r, denoted by If R is any antiderivative of r, then

L  rstd dt = Rstd + C.

1  rstd dt .

The usual arithmetic rules for indefinite integrals apply.
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A second integration gives

Substituting the values of and into the last equation gives the position vector of
the baseball.

(b) The baseball reaches its highest point when the vertical component of velocity is
zero, or

Solving for t we find

Substituting this time into the vertical component for r gives the maximum height

That is, the maximum height of the baseball is about 45.2 ft, reached about 1.6 sec
after leaving the bat.

(c) To find when the baseball lands, we set the vertical component for r equal to 0 and
solve for t:

The solution values are about and Substituting the posi-
tive time into the horizontal component for r, we find the range

Thus, the horizontal range is about 442 ft, and the flight time is about 3.3 sec.

In Exercises 37 and 38, we consider projectile motion when there is air resistance
slowing down the flight.

 L 442 ft .

 R = s152 cos 20° - 8.8ds3.3d

t = -0.06 sec.t = 3.3 sec

 3 + s51.99dt - 16t 2 = 0.

 3 + s152 sin 20°dt - 16t2 = 0

 L 45.2 ft .

 ymax = 3 + s152 sin 20°ds1.62d - 16s1.62d2

t = 152 sin 20°
32 L 1.62 sec.

dy
dt

= 152 sin 20° - 32t = 0.

 = s152 cos 20° - 8.8dt i + A3 + (152 sin 20°dt - 16t2 B j. = -16t2j + s152 cos 20° - 8.8dt i + s152 sin 20°dt j + 3j

 r = - 1
2 gt2j + v0 t + r0

r0v0

r = - 1
2 gt2j + v0 t + r0 .

738 Chapter 13: Vector-Valued Functions and Motion in Space

Exercises 13.2

Integrating Vector-Valued Functions
Evaluate the integrals in Exercises 1–10.

1.

2. L
2

1
cs6 - 6tdi + 32t j + a 4

t2 bk d  dt

L
1

0
[t3i + 7j + st + 1dk] dt

3.

4.

5. L
4

1
c1t  i + 1

5 - t j + 1
2t

 k d  dt

L
p>3

0
[ssec t tan tdi + stan tdj + s2 sin t cos tdk] dt

L
p>4

-p>4[ssin tdi + s1 + cos tdj + ssec2 tdk] dt
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6.

7.

8.

9.

10.

Initial Value Problems
Solve the initial value problems in Exercises 11–16 for r as a vector
function of t.

11.

12.

13.

14.

15.

16.

Motion Along a Straight Line
17. At time a particle is located at the point (1, 2, 3). It travels

in a straight line to the point (4, 1, 4), has speed 2 at (1, 2, 3) and
constant acceleration Find an equation for the posi-
tion vector r(t) of the particle at time t.

18. A particle traveling in a straight line is located at the point
and has speed 2 at time The particle moves

toward the point (3, 0, 3) with constant acceleration 
Find its position vector r(t) at time t.

Projectile Motion
Projectile flights in the following exercises are to be treated as ideal
unless stated otherwise. All launch angles are assumed to be measured
from the horizontal. All projectiles are assumed to be launched from
the origin over a horizontal surface unless stated otherwise.

19. Travel time A projectile is fired at a speed of 840 m sec at an
angle of 60°. How long will it take to get 21 km downrange?

>

2i + j + k.
t = 0.s1, -1, 2d

3i - j + k.

t = 0,

Differential equation:
d 2r
dt2 = - si + j + kd

Initial conditions: rs0d = 10i + 10j + 10k  and

dr
dt

 `
t = 0

= 0

Differential equation:
d 2r
dt2 = -32k

Initial conditions: rs0d = 100k  and

dr
dt

 `
t = 0

= 8i + 8j

Differential equation:
dr
dt

= st3 + 4tdi + t j + 2t2 k

Initial condition: rs0d = i + j

Differential equation:
dr
dt

= 3
2

 st + 1d1>2i + e-t j + 1
t + 1

 k

Initial condition: rs0d = k

Differential equation:
dr
dt

= s180tdi + s180t - 16t2dj

Initial condition: rs0d = 100j

Differential equation:
dr
dt

= - t i - t j - tk

Initial condition: rs0d = i + 2j + 3k

L
p/4

0
[sec t i + tan2 t j - t sin t k] dt

L
p>2

0
[cos t i - sin 2t j + sin2 t k] dt

L
ln 3

1
[tet i + et j + ln t k] dt

L
1

0
[tet2

 i + e-t j + k] dt

L
1

0
c 221 - t2

 i + 23
1 + t2 k d  dt
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20. Finding muzzle speed Find the muzzle speed of a gun whose
maximum range is 24.5 km.

21. Flight time and height A projectile is fired with an initial
speed of 500 m sec at an angle of elevation of 45°.

a. When and how far away will the projectile strike?

b. How high overhead will the projectile be when it is 5 km
downrange?

c. What is the greatest height reached by the projectile?

22. Throwing a baseball A baseball is thrown from the stands 32 ft
above the field at an angle of 30° up from the horizontal. When
and how far away will the ball strike the ground if its initial speed
is 32 ft sec?

23. Firing golf balls A spring gun at ground level fires a golf ball
at an angle of 45°. The ball lands 10 m away.

a. What was the ball’s initial speed?

b. For the same initial speed, find the two firing angles that
make the range 6 m.

24. Beaming electrons An electron in a TV tube is beamed hori-
zontally at a speed of toward the face of the tube
40 cm away. About how far will the electron drop before it hits?

25. Equal-range firing angles What two angles of elevation will
enable a projectile to reach a target 16 km downrange on the same
level as the gun if the projectile’s initial speed is 400 m sec?

26. Range and height versus speed

a. Show that doubling a projectile’s initial speed at a given
launch angle multiplies its range by 4.

b. By about what percentage should you increase the initial
speed to double the height and range?

27. Verify the results given in the text (following Example 4) for the
maximum height, flight time, and range for ideal projectile 
motion.

28. Colliding marbles The accompanying figure shows an experi-
ment with two marbles. Marble A was launched toward marble B
with launch angle and initial speed At the same instant,
marble B was released to fall from rest at units directly
above a spot R units downrange from A. The marbles were found
to collide regardless of the value of Was this mere coinci-
dence, or must this happen? Give reasons for your answer.

29. Firing from Derive the equations

(see Equation (7) in the text) by solving the following initial value
problem for a vector r in the plane.

 y = y0 + sy0 sin adt - 1
2

 gt2

 x = x0 + sy0 cos adt, 

sx0, y0d

B

A

R

1
2

!

v0

R tan !
gt2

y0 .

R tan a
y0 .a

>
5 * 106 m>sec

>

>
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30. Where trajectories crest For a projectile fired from the ground
at launch angle with initial speed consider as a variable
and as a fixed constant. For each we obtain
a parabolic trajectory as shown in the accompanying figure. Show
that the points in the plane that give the maximum heights of
these parabolic trajectories all lie on the ellipse

where 

31. Launching downhill An ideal projectile is launched straight
down an inclined plane as shown in the accompanying figure.

a. Show that the greatest downhill range is achieved when the
initial velocity vector bisects angle AOR.

b. If the projectile were fired uphill instead of down, what
launch angle would maximize its range? Give reasons for
your answer.

32. Elevated green A golf ball is hit with an initial speed of 
116 ft sec at an angle of elevation of 45° from the tee to a green
that is elevated 45 ft above the tee as shown in the diagram. 
Assuming that the pin, 369 ft downrange, does not get in the way,
where will the ball land in relation to the pin?

>

A

R

V
er

tic
al

O

Hill

v0

!

x

y

0

Ellipse

⎛
⎝

1
2

⎛
⎝

Parabolic
trajectory

R, ymax

x Ú 0.

x2 + 4 ay -
y0

2

4g
b2

=
y0

4

4g2 ,

a, 0 6 a 6 p>2,y0

ay0 ,a

   
dr
dt

 s0d = sy0 cos adi + sy0 sin adj

 Initial conditions:   rs0d = x0 i + y0 j

 Differential equation: d2r
dt2 = -g j

740 Chapter 13: Vector-Valued Functions and Motion in Space

33. Volleyball A volleyball is hit when it is 4 ft above the ground
and 12 ft from a 6-ft-high net. It leaves the point of impact with
an initial velocity of 35 ft sec at an angle of 27° and slips by the
opposing team untouched.

a. Find a vector equation for the path of the volleyball.

b. How high does the volleyball go, and when does it reach
maximum height?

c. Find its range and flight time.

d. When is the volleyball 7 ft above the ground? How far
(ground distance) is the volleyball from where it will land?

e. Suppose that the net is raised to 8 ft. Does this change things?
Explain.

34. Shot put In Moscow in 1987, Natalya Lisouskaya set a women’s
world record by putting an 8 lb 13 oz shot 73 ft 10 in. Assuming
that she launched the shot at a 40° angle to the horizontal from
6.5 ft above the ground, what was the shot’s initial speed?

35. Model train The accompanying multiflash photograph shows a
model train engine moving at a constant speed on a straight horizon-
tal track. As the engine moved along, a marble was fired into the air
by a spring in the engine’s smokestack. The marble, which continued
to move with the same forward speed as the engine, rejoined the en-
gine 1 sec after it was fired. Measure the angle the marble’s path
made with the horizontal and use the information to find how high
the marble went and how fast the engine was moving.

36. Hitting a baseball under a wind gust A baseball is hit when it
is 2.5 ft above the ground. It leaves the bat with an initial velocity
of 145 ft sec at a launch angle of 23°. At the instant the ball is hit,
an instantaneous gust of wind blows against the ball, adding a
component of to the ball’s initial velocity. A 15-ft-
high fence lies 300 ft from home plate in the direction of the flight.

a. Find a vector equation for the path of the baseball.

b. How high does the baseball go, and when does it reach
maximum height?

-14i sft>secd

>

>
369 ft

Pin

Green

45 ft

NOT TO SCALE

Tee

45°
116 ft /sec

7001_ThomasET_ch13p725-764.qxd  10/30/09  7:26 AM  Page 740



c. Find the range and flight time of the baseball, assuming that
the ball is not caught.

d. When is the baseball 20 ft high? How far (ground distance) is
the baseball from home plate at that height?

e. Has the batter hit a home run? Explain.

Projectile Motion with Linear Drag
The main force affecting the motion of a projectile, other than gravity,
is air resistance. This slowing down force is drag force, and it acts in a
direction opposite to the velocity of the projectile (see accompanying
figure). For projectiles moving through the air at relatively low speeds,
however, the drag force is (very nearly) proportional to the speed (to
the first power) and so is called linear.

37. Linear drag Derive the equations

by solving the following initial value problem for a vector r in the
plane.

The drag coefficient k is a positive constant representing re-
sistance due to air density, and are the projectile’s initial
speed and launch angle, and g is the acceleration of gravity.

38. Hitting a baseball with linear drag Consider the baseball
problem in Example 5 when there is linear drag (see Exercise
37). Assume a drag coefficient but no gust of wind.

a. From Exercise 37, find a vector form for the path of the
baseball.

b. How high does the baseball go, and when does it reach
maximum height?

c. Find the range and flight time of the baseball.

d. When is the baseball 30 ft high? How far (ground distance) is
the baseball from home plate at that height?

e. A 10-ft-high outfield fence is 340 ft from home plate in the
direction of the flight of the baseball. The outfielder can jump
and catch any ball up to 11 ft off the ground to stop it from
going over the fence. Has the batter hit a home run?

k = 0.12 ,

ay0

 
dr
dt
`
t=0

= v0 = sy0 cos adi + sy0 sin adj

 Initial conditions:  rs0d = 0

 Differential equation: d2r
dt2 = -gj - kv = -gj - k 

dr
dt

 y =
y0

k
 s1 - e-k tdssin ad +

g

k2 s1 - k t - e-k td

 x =
y0

k
 s1 - e-k td cos a

y

x

Drag force

Velocity

Gravity
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Theory and Examples
39. Establish the following properties of integrable vector functions.

a. The Constant Scalar Multiple Rule:

The Rule for Negatives,

is obtained by taking 

b. The Sum and Difference Rules:

c. The Constant Vector Multiple Rules:

and

40. Products of scalar and vector functions Suppose that the
scalar function u(t) and the vector function r(t) are both defined
for 

a. Show that ur is continuous on [a, b] if u and r are continuous
on [a, b].

b. If u and r are both differentiable on [a, b], show that ur is dif-
ferentiable on [a, b] and that

41. Antiderivatives of vector functions

a. Use Corollary 2 of the Mean Value Theorem for scalar func-
tions to show that if two vector functions and have
identical derivatives on an interval I, then the functions differ
by a constant vector value throughout I.

b. Use the result in part (a) to show that if R(t) is any anti-
derivative of r(t) on I, then any other antiderivative of r on I
equals for some constant vector C.

42. The Fundamental Theorem of Calculus The Fundamental
Theorem of Calculus for scalar functions of a real variable holds
for vector functions of a real variable as well. Prove this by using
the theorem for scalar functions to show first that if a vector func-
tion r(t) is continuous for then

at every point t of (a, b). Then use the conclusion in part (b) of
Exercise 41 to show that if R is any antiderivative of r on [a, b]
then

L
b

a
rstd dt = Rsbd - Rsad .

d
dt

 L
t

a
rstd dt = rstd

a … t … b ,

Rstd + C

R2stdR1std

d
dt

 surd = u 
dr
dt

+ r 
du
dt

.

a … t … b .

L
b

a
C * rstd dt = C * L

b

a
rstd dt sany constant vector Cd

L
b

a
C # rstd dt = C #L

b

a
rstd dt sany constant vector Cd

L
b

a
sr1std ; r2stdd dt = L

b

a
r1std dt ; L

b

a
r2std dt

k = -1.

L
b

a
s -rstdd dt = -L

b

a
rstd dt ,

L
b

a
krstd dt = kL

b

a
r std dt sany scalar kd
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43. Hitting a baseball with linear drag under a wind gust Con-
sider again the baseball problem in Example 5. This time assume
a drag coefficient of 0.08 and an instantaneous gust of wind that
adds a component of to the initial velocity at the
instant the baseball is hit.

a. Find a vector equation for the path of the baseball.

b. How high does the baseball go, and when does it reach
maximum height?

c. Find the range and flight time of the baseball.

d. When is the baseball 35 ft high? How far (ground distance) is
the baseball from home plate at that height?

-17.6i sft>secd

742 Chapter 13: Vector-Valued Functions and Motion in Space

e. A 20-ft-high outfield fence is 380 ft from home plate in the
direction of the flight of the baseball. Has the batter hit a
home run? If “yes,” what change in the horizontal component
of the ball’s initial velocity would have kept the ball in the
park? If “no,” what change would have allowed it to be a
home run?

44. Height versus time Show that a projectile attains three-quarters
of its maximum height in half the time it takes to reach the maxi-
mum height.

13.3 Arc Length in Space

In this and the next two sections, we study the mathematical features of a curve’s shape
that describe the sharpness of its turning and its twisting.

Arc Length Along a Space Curve

One of the features of smooth space and plane curves is that they have a measurable
length. This enables us to locate points along these curves by giving their directed distance
s along the curve from some base point, the way we locate points on coordinate axes by
giving their directed distance from the origin (Figure 13.12). This is what we did for plane
curves in Section 11.2.

To measure distance along a smooth curve in space, we add a z-term to the formula
we use for curves in the plane.

Base point

s–2

–1 20
1

3
4

FIGURE 13.12 Smooth curves can be
scaled like number lines, the coordinate of
each point being its directed distance along
the curve from a preselected base point.

DEFINITION The length of a smooth curve 
that is traced exactly once as t increases from to , is

(1)L = L
b

a
 C adx

dt
b2

+ ady
dt
b2

+ adz
dt
b2

 dt .

t = bt = aa … t … b ,
rstd = xstdi + ystdj + zstdk,

Just as for plane curves, we can calculate the length of a curve in space from any con-
venient parametrization that meets the stated conditions. We omit the proof.

The square root in Equation (1) is the length of a velocity vector dr dt. This en-
ables us to write the formula for length a shorter way.

>ƒ v ƒ ,

Arc Length Formula

(2)L = L
b

a
ƒ v ƒ dt

EXAMPLE 1 A glider is soaring upward along the helix 
How long is the glider’s path from to ?t = 2pt = 0

ssin tdj + tk.rstd = scos tdi +

7001_ThomasET_ch13p725-764.qxd  10/30/09  7:26 AM  Page 742



The velocity vector is the change in the position vector r with respect to time t, but
how does the position vector change with respect to arc length? More precisely, what is the
derivative Since for the curves we are considering, s is one-to-one and
has an inverse that gives t as a differentiable function of s (Section 3.8). The derivative of
the inverse is

This makes r a differentiable function of s whose derivative can be calculated with the
Chain Rule to be

(5)

This equation says that dr ds is the unit tangent vector in the direction of the velocity vec-
tor v (Figure 13.15).

>
dr
ds

= dr
dt

 
dt
ds

= v 
1
ƒ v ƒ

= v
ƒ v ƒ

= T.

dt
ds

= 1
ds>dt

= 1
ƒ v ƒ

.

ds>dt 7 0dr>ds?
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Exercises 13.3

Finding Tangent Vectors and Lengths
In Exercises 1–8, find the curve’s unit tangent vector. Also, find the
length of the indicated portion of the curve.

1.

2.

3.

4.

5.

6.

7.

8.

9. Find the point on the curve

at a distance units along the curve from the point in
the direction of increasing arc length.

10. Find the point on the curve

at a distance units along the curve from the point in
the direction opposite to the direction of increasing arc length.

Arc Length Parameter
In Exercises 11–14, find the arc length parameter along the curve
from the point where by evaluating the integral

from Equation (3). Then find the length of the indicated portion of the
curve.

11.

12.

13.

14. rstd = s1 + 2tdi + s1 + 3tdj + s6 - 6tdk, -1 … t … 0

rstd = set cos tdi + set sin tdj + et k, - ln 4 … t … 0

rstd = scos t + t sin tdi + ssin t - t cos tdj, p>2 … t … p
rstd = s4 cos tdi + s4 sin tdj + 3tk, 0 … t … p>2

s = L
t

0
 ƒ vstd ƒ dt

t = 0

s0, -12, 0d13p

rstd = s12 sin tdi - s12 cos tdj + 5tk

s0, 5, 0d26p

rstd = s5 sin tdi + s5 cos tdj + 12tk

rstd = st sin t + cos tdi + st cos t - sin tdj, 22 … t … 2

rstd = st cos tdi + st sin tdj + A222>3 B t3>2 k, 0 … t … p
rstd = 6t3 i - 2t3 j - 3t3 k, 1 … t … 2

rstd = scos3 t dj + ssin3 t dk, 0 … t … p>2rstd = s2 + tdi - st + 1dj + tk, 0 … t … 3

rstd = t i + s2>3dt3>2 k, 0 … t … 8

rstd = s6 sin 2tdi + s6 cos 2tdj + 5tk, 0 … t … p
rstd = s2 cos tdi + s2 sin tdj + 25tk, 0 … t … p

Theory and Examples
15. Arc length Find the length of the curve

from (0, 0, 1) to 

16. Length of helix The length of the turn of the helix in
Example 1 is also the length of the diagonal of a square units
on a side. Show how to obtain this square by cutting away and
flattening a portion of the cylinder around which the helix winds.

17. Ellipse

a. Show that the curve 
is an ellipse by showing that it is the intersection

of a right circular cylinder and a plane. Find equations for the
cylinder and plane.

b. Sketch the ellipse on the cylinder. Add to your sketch the unit
tangent vectors at and 

c. Show that the acceleration vector always lies parallel to the
plane (orthogonal to a vector normal to the plane). Thus, if
you draw the acceleration as a vector attached to the ellipse, it
will lie in the plane of the ellipse. Add the acceleration 
vectors for and to your sketch.

d. Write an integral for the length of the ellipse. Do not try to
evaluate the integral; it is nonelementary.

e. Numerical integrator Estimate the length of the ellipse to
two decimal places.

18. Length is independent of parametrization To illustrate that
the length of a smooth space curve does not depend on the param-
etrization you use to compute it, calculate the length of one turn
of the helix in Example 1 with the following parametrizations.

a.

b.

c. rstd = scos tdi - ssin td j - tk, -2p … t … 0

rstd = [cos st>2d]i + [sin st>2d] j + st>2dk, 0 … t … 4p

rstd = scos 4tdi + ssin 4tdj + 4tk, 0 … t … p>2

3p>2t = 0, p>2, p ,

3p>2.t = 0, p>2, p ,

 0 … t … 2p ,
rstd = scos tdi + ssin tdj + s1 - cos tdk,

2p
2p22

A22, 22, 0 B .rstd = A22t B i + A22t B j + s1 - t2dk

T

7001_ThomasET_ch13p725-764.qxd  10/30/09  7:26 AM  Page 745



19. The involute of a circle If a string wound around a fixed circle
is unwound while held taut in the plane of the circle, its end P
traces an involute of the circle. In the accompanying figure, the
circle in question is the circle and the tracing point
starts at (1, 0). The unwound portion of the string is tangent to the
circle at Q, and t is the radian measure of the angle from the posi-
tive x-axis to segment OQ. Derive the parametric equations

of the point P(x, y) for the involute.

x

y

Q

t

O 1 (1, 0)

String

P(x, y)

x = cos t + t sin t, y = sin t - t cos t, t 7 0

x2 + y2 = 1

746 Chapter 13: Vector-Valued Functions and Motion in Space

20. (Continuation of Exercise 19. ) Find the unit tangent vector to the
involute of the circle at the point P(x, y).

21. Distance along a line Show that if u is a unit vector, then the
arc length parameter along the line from the
point where , is t itself.

22. Use Simpson’s Rule with to approximate the length of arc
of from the origin to the point (2, 4, 8).r(t) = t i + t2j + t3k

n = 10

t = 0P0sx0, y0, z0d
rstd = P0 + t u

13.4 Curvature and Normal Vectors of a Curve

In this section we study how a curve turns or bends. We look first at curves in the coordi-
nate plane, and then at curves in space.

Curvature of a Plane Curve

As a particle moves along a smooth curve in the plane, turns as the curve
bends. Since T is a unit vector, its length remains constant and only its direction changes
as the particle moves along the curve. The rate at which T turns per unit of length along
the curve is called the curvature (Figure 13.17). The traditional symbol for the curvature
function is the Greek letter (“kappa”).k

T = dr>ds

DEFINITION If T is the unit vector of a smooth curve, the curvature function
of the curve is

k = ` dT
ds
` .

x

y

0

s

P T

T

T

P0

FIGURE 13.17 As P moves along the
curve in the direction of increasing arc
length, the unit tangent vector turns. The
value of at P is called the
curvature of the curve at P.

ƒ dT>ds ƒ

If is large, T turns sharply as the particle passes through P, and the curvature
at P is large. If is close to zero, T turns more slowly and the curvature at P is
smaller.

ƒ dT>ds ƒ
ƒ dT>ds ƒ
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EXAMPLE 6 Find N for the helix in Example 5 and describe how the vector is pointing.

Solution We have

Example 5

Eq. (4)

Thus, N is parallel to the xy-plane and always points toward the z-axis.

 = - scos tdi - ssin tdj.

 = - 2a2 + b2

a  #  
12a2 + b2

 [sa cos tdi + sa sin tdj]

 N =
dT>dt

ƒ dT>dt ƒ

 ̀ dT
dt
` = 12a2 + b2

 2a2 cos2 t + a2 sin2 t = a2a2 + b2

 dT
dt

= - 12a2 + b2
 [sa cos tdi + sa sin tdj]
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Exercises 13.4

Plane Curves
Find T, N, and for the plane curves in Exercises 1–4.

1.

2.

3.

4.

5. A formula for the curvature of the graph of a function in the
xy-plane

a. The graph in the xy-plane automatically has the
parametrization and the vector formula

Use this formula to show that if ƒ is a
twice-differentiable function of x, then

b. Use the formula for in part (a) to find the curvature of
Compare your answer

with the answer in Exercise 1.

c. Show that the curvature is zero at a point of inflection.

6. A formula for the curvature of a parametrized plane curve

a. Show that the curvature of a smooth curve 
defined by twice-differentiable functions and

is given by the formula

The dots in the formula denote differentiation with respect to t,
one derivative for each dot. Apply the formula to find the curva-
tures of the following curves.

b.

c. rstd = [tan-1 ssinh td]i + sln cosh tdj.
rstd = t i + sln sin tdj, 0 6 t 6 p

k =
ƒ x 

# y$ - y 
# x$ ƒ

sx# 2 + y# 2d3>2 .

y = g std
x = ƒstdg stdj

rstd = ƒstdi +

y = ln scos xd, -p>2 6 x 6 p>2.
k

ksxd =
ƒ ƒ–sxd ƒC1 + sƒ¿sxdd2 D3>2 .

rsxd = x i + ƒsxdj.
x = x, y = ƒsxd ,

y = ƒsxd

rstd = scos t + t sin tdi + ssin t - t cos tdj, t 7 0

rstd = s2t + 3di + s5 - t2dj
rstd = sln sec tdi + t j, -p>2 6 t 6 p>2rstd = t i + sln cos tdj, -p>2 6 t 6 p>2k

7. Normals to plane curves

a. Show that and 
are both normal to the curve at the

point (ƒ(t), g(t)).

To obtain N for a particular plane curve, we can choose the one of
n or from part (a) that points toward the concave side of the
curve, and make it into a unit vector. (See Figure 13.19.) Apply
this method to find N for the following curves.

b.

c.

8. (Continuation of Exercise 7. )

a. Use the method of Exercise 7 to find N for the curve 
when when 

b. Calculate N for directly from T using Equation (4) for
the curve in part (a). Does N exist at Graph the curve
and explain what is happening to N as t passes from negative
to positive values.

Space Curves
Find T, N, and for the space curves in Exercises 9–16.

9.

10.

11.

12.

13.

14.

15.

16.

More on Curvature
17. Show that the parabola has its largest curvature

at its vertex and has no minimum curvature. (Note: Since the cur-
vature of a curve remains the same if the curve is translated or ro-
tated, this result is true for any parabola.)

y = ax2, a Z 0,

rstd = scosh tdi - ssinh tdj + tk

rstd = t i + sa cosh st>addj, a 7 0

rstd = scos3 tdi + ssin3 tdj, 0 6 t 6 p>2rstd = st3>3di + st2>2dj, t 7 0

rstd = s6 sin 2tdi + s6 cos 2tdj + 5tk

rstd = set cos tdi + set sin tdj + 2k

rstd = scos t + t sin tdi + ssin t - t cos tdj + 3k

rstd = s3 sin tdi + s3 cos tdj + 4tk

k

t = 0?
t Z 0

t 7 0.t 6 0;ti + s1>3dt 3 j
rstd =

rstd = 24 - t2 i + t j, -2 … t … 2

rstd = t i + e2tj

-n

rstd = ƒstdi + g stdjƒ¿stdj
-nstd = g¿stdi -nstd = -g¿stdi + ƒ¿stdj
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18. Show that the ellipse has its
largest curvature on its major axis and its smallest curvature on its
minor axis. (As in Exercise 17, the same is true for any ellipse.)

19. Maximizing the curvature of a helix In Example 5, we found
the curvature of the helix 

to be What is the largest value 
can have for a given value of b? Give reasons for your answer.

20. Total curvature We find the total curvature of the portion of a
smooth curve that runs from to by integrating

from to If the curve has some other parameter, say t, then
the total curvature is

where and correspond to and Find the total curvatures of

a. The portion of the helix 

b. The parabola 

21. Find an equation for the circle of curvature of the curve
at the point (The curve parame-

trizes the graph of in the xy-plane.)

22. Find an equation for the circle of curvature of the curve 
at the point 

where 

The formula

derived in Exercise 5, expresses the curvature of a twice-
differentiable plane curve as a function of x. Find the curva-
ture function of each of the curves in Exercises 23–26. Then graph ƒ(x)
together with over the given interval. You will find some surprises.

23. 24.

25. 26. y = ex, -1 … x … 2y = sin x, 0 … x … 2p

y = x4>4, -2 … x … 2y = x2, -2 … x … 2

ksxd

y = ƒsxd
ksxd

ksxd =
ƒ ƒ–sxd ƒC1 + sƒ¿sxdd2 D3>2 ,

t = 1.
s0, -2d ,s2 ln tdi - [t + s1>td] j,  e-2 … t … e2 ,

rstd =
y = sin x

sp>2, 1d .rstd = t i + ssin tdj

y = x2, - q 6 x 6 q .

0 … t … 4p .
rstd = s3 cos tdi + s3 sin tdj + tk,

s1 .s0t1t0

K = L
s1

s0

k ds = L
t1

t0
k 

ds
dt

 dt = L
t1

t0
 k ƒ v ƒ dt ,

s1 .s0k
s = s1 7 s0s = s0

kk = a>sa2 + b2d .sa, b Ú 0d
rstd = sa cos tdi + sa sin tdj + btk

x = a cos t, y = b sin t, a 7 b 7 0,
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COMPUTER EXPLORATIONS
In Exercises 27–34 you will use a CAS to explore the osculating circle
at a point P on a plane curve where Use a CAS to perform the
following steps:

a. Plot the plane curve given in parametric or function form over
the specified interval to see what it looks like.

b. Calculate the curvature of the curve at the given value using
the appropriate formula from Exercise 5 or 6. Use the 
parametrization and if the curve is given as a
function 

c. Find the unit normal vector N at Notice that the signs of the
components of N depend on whether the unit tangent vector T is
turning clockwise or counterclockwise at (See Exercise 7.)

d. If is the vector from the origin to the center (a, b)
of the osculating circle, find the center C from the vector equation

The point on the curve is given by the position vector

e. Plot implicitly the equation of the
osculating circle. Then plot the curve and osculating circle 
together. You may need to experiment with the size of the 
viewing window, but be sure it is square.

27.

28.

29.

30.

31.

32.

33.

34. y = xs1 - xd2>5, -1 … x … 2, x0 = 1>2y = x2 - x, -2 … x … 5, x0 = 1

rstd = se-t cos tdi + se-t sin tdj, 0 … t … 6p, t0 = p>4t0 = 3p>2rstd = s2t - sin tdi + s2 - 2 cos tdj, 0 … t … 3p, 

rstd = st3 - 2t2 - tdi + 3t21 + t2
 j, -2 … t … 5, t0 = 1

rstd = t2i + st3 - 3tdj, -4 … t … 4, t0 = 3>5rstd = scos3 tdi + ssin3 tdj, 0 … t … 2p, t0 = p>4rstd = s3 cos tdi + s5 sin tdj, 0 … t … 2p, t0 = p>4
sx - ad2 + s y - bd2 = 1>k2

rst0d .
Psx0 , y0d

C = rst0d + 1
kst0d Nst0d .

C = a i + b j

t = t0 .

t0 .

y = ƒsxd .
y = ƒstdx = t

t0k

k Z 0.

T

13.5 Tangential and Normal Components of Acceleration

If you are traveling along a space curve, the Cartesian i, j, and k coordinate system for rep-
resenting the vectors describing your motion is not truly relevant to you. What is meaning-
ful instead are the vectors representative of your forward direction (the unit tangent vector
T), the direction in which your path is turning (the unit normal vector N), and the tendency
of your motion to “twist” out of the plane created by these vectors in the direction perpen-
dicular to this plane (defined by the unit binormal vector ). Expressing the ac-
celeration vector along the curve as a linear combination of this TNB frame of mutually
orthogonal unit vectors traveling with the motion (Figure 13.23) is particularly revealing
of the nature of the path and motion along it.

The TNB Frame

The binormal vector of a curve in space is a unit vector orthogonal to both T
and N (Figure 13.24). Together T, N, and B define a moving right-handed vector frame that
plays a significant role in calculating the paths of particles moving through space. It is called
the Frenet (“fre-nay”) frame (after Jean-Frédéric Frenet, 1816–1900), or the TNB frame.

B = T * N,

B = T * N

y

z

x

N 5 1
κ

dT
ds

P0

s

P

B 5 T × N 

T 5 dr
dsr

FIGURE 13.23 The TNB frame of
mutually orthogonal unit vectors traveling
along a curve in space.
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