List of my papers with links



Published:


1.  N. Gusevskii, M. Kapovich,  Conformal structures on 3- manifolds, Soviet Math. Dokl., Vol. 34 (1987) p. 314-318.


2. M. Kapovich, Some properties of developing maps of conformal structures on 3-manifolds, Soviet Math. Dokl., Vol. 35 (1987) p. 146-149.


3. M. Kapovich, On conformal structures with Fuchsian holonomy, Soviet Math. Dokl., Vol. 38 (1989) N 1, p. 14-17.


4. M. Kapovich, Kleinian Groups and Flat Conformal Structures, Ph. D. thesis, Institute of Mathematics, Siberian Branch of Soviet Academy of Sci., Novosibirsk (1988).


5. M. Kapovich, Deformation spaces of flat conformal structures, In: "Proceedings of the Second Soviet-Japan Joint Symposium on Topology" (Khabarovsk, 1989), Answers and Questions in General Topology, Vol. 8 (1990) N 1, p. 253-264.


6. M. Kapovich, L. Potyagailo, On absence of Ahlfors' and Sullivan's finiteness theorems for Kleinian groups in higher dimensions, Siberian Math. Journ., Vol. 32 (1991)  N 2, p. 61-73.


7. M. Kapovich, L. Potyagailo, On absence of Ahlfors' finiteness theorem for Kleinian groups in dimension 3, Topology and its Applications, Vol. 40 (1991) p. 83-91.


8. M. Kapovich, Deformations of representations of fundamental groups of 3-manifolds, Siberian Math. Journ., Vol. 32 (1991), N 1, p. 43-49.


9. M. Kapovich, Flat conformal structures on 3-manifolds. The existence problem: I, Siberian Math. Journ., Vol. 30 (1989), N 5, p. 60-73.


10. M. Kapovich, Flat conformal structures on 3-manifolds (survey), In: "Proceedings of International Conference dedicated to A. Maltsev", Novosibirsk, 1989. Contemporary Mathematics, 1992, Vol. 131.1, p. 551-570.


11. M. Kapovich, On absence of Sullivan's cusp finiteness theorem in higher dimensions. In: "Algebra and analysis" (Irkutsk, 1989), p. 77-89. Amer. Math. Soc. Transl. Ser. 2, Vol. 163, Amer. Math. Soc., Providence, RI, 1995.


12. M. Kapovich, Flat conformal structures on 3-manifolds, I, Journal of Diff. Geometry, Vol. 38, N 1, (1993) 191-215.


13. M. Kapovich, Deformations of representations of discrete subgroups of SO(3,1), Math. Annalen, Vol. 299 (1994) p. 341-354.


14. M. Kapovich, On monodromy of complex projective structures, Inventiones Math., Vol. 119 (1995) p. 243-265.


15. M. Kapovich, J. Millson, On the moduli spaces of polygons in the Euclidean plane, Journal of Diff. Geometry, Vol. 42 (1995) N 1, p. 133-164.


16. M. Kapovich, B. Leeb, On asymptotic cones and quasi-isometry classes of fundamental groups of nonpositively curved manifolds, Geometric Analysis and Functional Analysis, Vol. 5 (1995) N 3, p. 582-603.


17. M. Kapovich, J. Millson, The relative deformation theory of flat connections and deformations of linkages in spaces of constant curvature, Compositio Math., Vol. 103 (1996)  N 3, p. 287-317.


18. M. Kapovich, J. Millson, On the deformation theory of representations of fundamental groups of hyperbolic 3-manifolds, Topology, Vol. 35, N 4 (1996) p. 1085-1106.


19. M. Kapovich, J. Millson, The symplectic geometry of polygons in Euclidean space, Journal of Diff. Geometry, Vol. 44 (1996) p. 479-513.


20. M. Kapovich, B. Leeb, Actions of discrete groups on Hadamard spaces, Math. Annalen, Bd. 306 (1996) p. 341-352.


21. M. Kapovich, B. Leeb, Quasi-isometries preserve the geometric decomposition of Haken manifolds, Inventiones Math., Vol. 128, F. 2 (1997) p. 393-416.


22. M. Kapovich, J. Millson, Hodge theory and the art of paper folding, Publications of RIMS (Kyoto), Vol. 33, (1997) N 1, p. 1-33.


23M. Kapovich, J. Millson, Artin groups, projective arrangements and fundamental groups of smooth complex-algebraic varieties, C. R. Acad. Sci. Paris, Ser I, Math 325 (1997) N8, p. 871-876. 


24. M. Kapovich, B. Leeb, 3-manifold groups and nonpositive curvature, Geometric Analysis and Functional Analysis, vol. 8 (1998), N 5, p. 841-852.


25. M. Kapovich, B. Kleiner and B. Leeb, On quasi-isometry invariance of de Rham decomposition of nonpositively curved Riemannian manifolds, Topology, vol. 37 (1998) N 6, p. 1193-1212.


26. M. Kapovich, On dynamics of pseudo-Anosov homeomorphisms on representation varieties of surface groups, Ann. Acad. Sci. Fenn., Vol. 23 (1998) p. 83-100.


27. M. Kapovich, J. Millson, On representation varieties of Artin groups, projective arrangements and the fundamental groups of smooth complex algebraic varieties, Math. Publications of IHES, Vol. 88 (1999) p. 5-95.


28. M. Kapovich, J. Millson, Moduli spaces of linkages and arrangements, In: ``Advances in Geometry'', J.-L. Brylinski, et al (eds.), Progress in Mathematics, Birkhauser, Vol. 172 (1999) p. 237-270.


29. M. Kapovich, J. Millson, On the moduli space of a spherical polygonal linkage Canad. Math. Bull., Vol. 42 (1999) p. 307-320.


30. D. Gallo, M. Kapovich and A. Marden, On monodromy of Schwarzian differential equation on Riemann surfaces, Annals of Math., Vol. 151 (2000), N 2, p. 625-704.


31. M. Kapovich, J. Millson and T. Treloar, The symplectic geometry of polygons in hyperbolic 3-space. Asian Journal of Math., Vol. 4 (2000), N1 (Kodaira's 75-th birthday volume), p. 123-164.


32. M. Kapovich, "Hyperbolic Manifolds and Discrete Groups", Birkhauser's series "Progress in Mathematics'', 2000. Reprinted in 2009. 


Correction to the chapter on Thurston's Norm.


33. M. Kapovich, B. Kleiner, Hyperbolic groups with low-dimensional boundary, Ann. Sci. de ENS Paris, t. 33 (2000) p. 647-669.


34. W. Goldman, M. Kapovich and B. Leeb, Complex hyperbolic surfaces homotopy-equivalent to a Riemann surface, Comm. in Analysis and Geom., Vol. 9, N 1 (2001), 61-96.


35. M. Kapovich, J. Millson, Quantization of bending deformations of polygons in E3 , hypergeometric integrals and the Gassner representation, Canad. Math. Bull., Vol. 44 (2001), p. 36--60.


36. M. Kapovich, J. Millson, Universality theorem for configuration spaces of planar linkages, Topology, Vol. 41 (2002), no. 6,  p. 1051--1107.


37.  M.Bestvina, M. Kapovich and B. Kleiner, Van Kampen's embedding obstruction for discrete groupsInventiones Math.,  Vol. 150 (2002) no. 2,  p. 219-235. 


38. M. Kapovich, Conformally flat metrics on 4-manifolds, Journal of Diff. Geometry, Vol. 66 (2004) p. 1-13. 


39. M. Kapovich, B. Kleiner, Coarse Alexander duality and duality groups, Journal of Differential Geometry,  Vol. 69, (2005)  Number 2, p. 279-352.


40. M. Kapovich, Flats in 3-manifolds, Annales de la Faculte des Sciences de Toulouse, Vol. 14 (2005),  F. 3, p. 459-499. 


41. M. Kapovich, Representations of polygons of finite groups, Geometry and Topology, Vol. 9 (2005) Paper no. 43, p. 1915-1951. 


42. M. Kapovich, Generalized triangle inequalities and their applications,  Proceedings of the International Congress of Mathematicians - Madrid, August 22-30, 2006.  Eds. Marta Sanz-Sola, Javier Soria, Juan L. Varona, Joan Verdera. Vol. 2, p. 719-742.


43. M. Kapovich, J. Millson,  Structure of the tensor product semigroup, Asian Math Journal (S.S.Chern memorial issue) Vol. 10, N. 3 (2006) p. 493-540.


44. T. Haines, M. Kapovich and J. Millson, Appendix A to Equidimensionality of convolution morphisms and applications to saturation problems (by T. Haines), Advances in Mathematics, Vol. 207, (2006) Issue 1, p.  321-327. 


45. M. Kapovich, B. Kleiner, Weak hyperbolization conjecture for 3-dimensional  CAT(0) groupsGeometry, Groups and Dynamics, Vol. 1 (2007),  p. 67-79.  


46. M. Kapovich, Triangle inequalities in path metric spaces. Geometry and Topology, Vol. 11 (2007) p. 1653-1680. 


47. M. Kapovich, Verallgemeinerte Dreiecksungleichungen (Generalized Triangle Inequalities), Jahrbuch von der  Max-Planck-Gesellschaft, 2007, p. 355-358. 


48. M. Kapovich, Kleinian groups in higher dimensions. In "Geometry and Dynamics of Groups and Spaces. In memory of Alexander Reznikov'', M.Kapranov et al (eds). Birkhauser, Progress in Mathematics, Vol. 265, 2007, p. 485-562. 


49. M. Kapovich, Convex projective structures on Gromov-Thurston manifolds. Geometry and Topology, Vol. 11 (2007) p. 1777-1830. 


50. M. Kapovich, L. Potyagailo and E. Vinberg, Non-coherence of some non-uniform lattices in Isom(H^4). Geometry and Topology Monographs (Zieschang's memorial volume), Vol. 14, 2008, p. 335-351. 


51. M. Kapovich, B. Leeb and J. Millson, The generalized triangle inequalities in symmetric spaces and buildings with applications to algebra, Memoirs of AMS, Vol. 192, 2008. 


52. M. Kapovich, J. Millson, A path model for geodesics in Euclidean buildings and its applications  to representation theory. Groups, Geometry and Dynamics, Vol 2, 2008, p. 405-480.


53. M. Kapovich, S. Kumar and J. Millson, The eigencone and saturation for Spin(8). Pure and Applied Mathematics Quarterly, Vol. 5, N2 (Hirzebruch Special Issue, Part 1), 2009, p. 755-780. 


54. M. Kapovich, Homological dimension and critical exponent of Kleinian groups. Geometric Analysis and Functional Analysis, Vol. 18 (2009), N 6, 2017-2054. 


55. M. Kapovich, B. Leeb and J. Millson, Convex functions on symmetric spaces, side lengths of polygons and the stability inequalities for weighted configurations at infinity.  Journal of Differential Geometry,  Vol. 81, 2009, p. 297- 354. 


56. M. Kapovich, B. Kleiner, Appendix to "Lacunary hyperbolic groups", by A. Olshanskii, D.Osin, M.Sapir. Geometry and Topology, Vol. 13 (2009) p. 2132-2137.  Pages 2132-2137.


57. M. Kapovich, B. Leeb and J. Millson, Polygons in buildings and their refined side lengths. Geometric Analysis and Functional Analysis, Vol. 19 (2009), no. 4, p. 1081-1100. 


58. M. Kapovich, On sequences of finitely generated discrete groups. In the tradition of Ahlfors-Bers. V, Contemporary Math, Vol. 510 (2010), p. 165-184. 


59. M. Kapovich, Geometrization TheoremMcGraw Hill 2010 Yearbook of Science & Technology. 


60. M.Kapovich, Appendix to "The Kakimizu complex is simply connected" by J.Schultens, Journal of Topology, Vol. 3 (2010), p. 897-900. 


61. A. Berenstein, M. Kapovich, Stability inequalities and universal Schubert calculus of rank 2, Transformation Groups, Vol. 16 (2011) p. 955-1007.  


62. T. Haines, M. Kapovich and J. Millson, Ideal triangles in Euclidean buildings and branching to Levi subgroups, Journal of Algebra, Vol. 361 (2012), p. 41-78.  


63. A. Berenstein, M. Kapovich, Affine buildings for dihedral groups, Geometria Dedicata, Vol. 156 (2012) p.  171-207.


64. M. Kapovich, RAAGs in Ham, Geometric and Functional Analysis, Vol. 22 (2012) p. 733-755.


65. M. Kapovich, Arithmetic aspects of self-similar groupsGroups, Geometry and Dynamics, Vol. 6 (2012) p. 737- 754.


66. M. Kapovich,  Non-coherence of arithmetic hyperbolic latticesGeometry and Topology, Vol 17 (2013) p. 39-71. 

67. M.Kapovich, J.Kollar, Fundamental groups of links of isolated singularitiesJournal of AMS, Vol 27 (2014) p. 929-952.


68. M.Kapovich, Dirichlet domains and topology of projective varieties, Inventiones Mathematicae, Vol. 194,  (2013) 3, p. 631-672. 


69. M.Kapovich, "Lectures on quasi-isometric rigidity", In "Geometric Group Theory", Publications of IAS/Park City Summer Institute, Vol. 21, 2014, p. 127-172. 


70. M.Kapovich, Energy of harmonic functions and Gromov's proof of Stallings' theorem, Georgian Mathematical Journal, Vol. 21 (2014), Issue 3, p. 281-296.


71. M. Kapovich, "Buildings and tensor product multiplicities." Appendix to the survey Additive Eigenvalue Problem,  by S. Kumar. Transformation Groups, Vol. 19 (2014) 1051-1148. Pages 1122-1142. 


72. K. Fujiwara, M. Kapovich, On quasihomomorphisms with noncommutative targets, GAFA,  26 (2016) 478-519.


73. M. Kapovich, Discreteness is undecidableIJAC, Vol. 26 (2016) p. 467-472. 


74. M. Kapovich, B. Leeb and J. Porti, Some recent results on Anosov representationsTransformation Groups, Vol. 21 (2016) 4, 1105-1121. 


75. M. Kapovich, Krull dimensions of rings of holomorphic functions, The older version is here. Proceedings of Complex Analysis and Dynamical Systems, VII. Contemporary Mathematics,


vol. 699, Amer. Math. Soc., Providence, RI, 2017, pp. 167-173. 


76. M. Kapovich, J. Millson, On representation varieties of 3-manifold groups, Geometry and Topology, Vol. 21 (2017) p. 1931-1968. 


77. M. Kapovich, B. Leeb and J. Porti, Dynamics on flag manifolds: domains of proper discontinuity and cocompactnessGeometry and Topology, Vol. 22 (2017) 157-234.


78. C. Drutu, M. Kapovich, “Geometric group theory". Final Version: September 2017. A book in the AMS series "Colloquium Publications”,  March, 2018.


79. M. Kapovich, B. Leeb and J. Porti, Anosov subgroups: Dynamical and geometric characterizationsEuropean Mathematical Journal. Vol. 3 (2017) 808-898.


80. M. Kapovich, B. Leeb, Discrete isometry groups of symmetric spaces, Spring 2015 MSRI Lecture Notes. Volume IV of Handbook of Group Actions. The ALM series, International Press, Eds. L.Ji, A.Papadopoulos, S-T.Yau. (2018) Chapter 5, p. 191-290. 


81. M. Kapovich and B. Leeb, Finsler bordifications of symmetric and certain locally symmetric spaces. Geometry and Topology, 22 (2018) 2533-2646.


82. M. Kapovich, B. Leeb and J. Porti, A Morse Lemma for quasigeodesics in symmetric spaces and euclidean buildings, Geometry and Topology, 22 (2018) 3827-3923. 


83. S. Dey, M. Kapovich, B. Leeb, A combination theorem for Anosov subgroups. Math. Zeitschrift, 293 (2019) 1-2, 551-578.


84. M. Kapovich, B.Liu, Geometric finiteness in negatively pinched Hadamard manifolds. Ann. Acad. Sci. Fennicae, 44 (2019) 2, 841-875.


85. S. Dey, M. Kapovich, B. Liu, Ping-pong in Hadamard manifolds. Munster Journal of Math. 12 (2019) 453-471.


86. M. Kapovich, Periods of abelian differentials and dynamics. In "Dynamics: Topology and Numbers" (Proceedings of Kolyada Memorial Conference), Contemporary Mathematics, AMS, vol. 744, 2020, 297-315.


87. M. Kapovich, B. Liu, Hausdorff dimension of nonconical limit sets, Transactions of the AMS, 373 (2020) 7207-7224. 


88. S. Dey, M. Kapovich, A note on complex-hyperbolic Kleinian groups, Arnold Mathematical Journal, 6 (2020) no. 3-4, 397-406.  


89. M. Kapovich, A note on Selberg's lemma and negatively pinched Hadamard manifolds. Journal of Differential Geometry, 120 (2022), N3, 519-531.


90. M. Kapovich, A survey of complex hyperbolic Kleinian groups, "In the tradition of Thurston, II. Essays in geometry", Springer Verlag, 2022, 7-51.


91. S. Dey, M. Kapovich, Patterson-Sullivan theory for Anosov subgroups. Transactions of the AMS, 375 (2022) N12, 8687-8737.


92. M. Kapovich, Geometric algorithms for discreteness and faithfulnessContemporary Mathematics, Vol. 783,  “Computational aspects of discrete subgroups of Lie groups”, p. 87-112.


93. M. Kapovich, A. Detinko, A. Kontorovich, List of problems on discrete subgroups of Lie groups and their computational aspects. Contemporary Mathematics, Vol. 783,  “Computational


aspects of discrete subgroups of Lie groups”,
p. 113-126.


94. M. Kapovich, S. Kim, J. Lee, Structural stability of meandering-hyperbolic group actions. Journal of Institute of Mathematics of Jussieu, 23 (2024) N 2, 753-810. 


95. M. Belolipetsky, M. Kapovich, Effective bounds for Vinberg's algorithm for arithmetic hyperbolic lattices, San Paulo Journal of Math Sciences, 2024.  


96. M. Kapovich, A note on laminations with symmetric leaves EMS Surveys in Mathematical Sciences, Sullivan’s 80th birthday volume, 10 (2023) N1, 123-130.


97.  M. Kapovich, A. Kontorovich, On Superintegral Kleinian Sphere Packings, Bugs, and Arithmetic Groups.  Crelle Journal, 798 (2023) 105-142. 


98. M. Kapovich, A note on properly discontinuous actions arXiv:2301.05325. San Paulo Journal of Math Sciences, 2024.  


99. M. Kapovich, B. Leeb, Relativizing characterizations of Anosov subgroups, I.  Groups, Geometry and Dynamics, 17 (2023) N 3, 1005-1071. 


100. S. Dey, M. Kapovich, Klein-Maskit combination for Anosov subgroups: Free products. Preprint, arXiv:2205.03919.   Math. Zeitschrift, 305 (2023) N 2, paper number 35, 25 pp.

101.  M. Kapovich, P. Sardar, Trees of hyperbolic spaces. AMS Surveys and Monographs, Vol. 282, 2024.


102. M. Kapovich, B. Leeb, Domains of discontinuity of Lorentzian affine group actions, Geometria Dedicata, 218 (2024) N 4.

103. S. Dey, M. Kapovich, Klein-Maskit combination theorem for Anosov subgroups: Amalgams. arXiv:2301.02345. Crelle Journal, to appear.


104. D. Danielski, M. Kapovich, J. Swiatkowski, Complete Characterization of hyperbolic Coxeter groups with Sierpinski curve boundary and with Menger curve boundary. Fundamenta Mathematicae, 2024.




Preprints and submitted:


1. M. Kapovich, Intersection pairing on hyperbolic 4-manifolds, Preprint of MSRI, 1992. To be revised and submitted one day.


2. M. Kapovich, Hyperbolic 4-manifolds fibered over surfaces. Preprint, 1993. To be revised and submitted one day.


3. M. Kapovich, Eisenstein series and Dehn surgery. Preprint of MSRI, 1992. To be revised and submitted one day.


4.  M. Kapovich, An example of a 2-dimensional hyperbolic group which cannot act on 2-dimensional complexes of negative curvature. Preprint 1994.


5. M. Kapovich, Discrete Groups and Riemann Surfaces: Notes on Teichmuller theory. University of Utah Lecture Notes, 1993.


6. M. Kapovich, On normal subgroups in the fundamental groups of complex surfaces. Preprint, 1998. To be revised and submitted one day.


7. M. Kapovich, B. Kleiner, Geometry of Gromov-hyperbolic spaces satisfying coarse Poincare duality. Preprint, 2004. 


8. M. Kapovich, B. Kleiner, Geometry of quasi-planes. Preprint, 2004.


9. M. Kapovich, B. Kleiner, Coarse fibrations and a generalization of the Seifert fibered space conjecture. Preprint, 2004.


10. Problems in Geometric Group Theory, AIM 2005.

11. M. Kapovich, B. Leeb and J. Porti, Morse actions of discrete groups on symmetric spaces, Preprint, 2014. Most of this paper was published in [77] and [79], except for section 7 which will appear (one day) as a separate paper, currently preprint [15]. 


12. M.Kapovich, Characterization of covering maps via path-lifting property. 


13. M. Kapovich, Branched covers between spheres and polygonal inequalities in simplicial trees. Preprint, 2017. 


14. Problems on discrete subgroups of Lie groups, BIRS, 2019.


15. M. Kapovich, B. Leeb, J. Porti, Morse actions of discrete groups on symmetric spaces: Local-to-global principle. Preprint, 2023, submitted.