SOLUTION 18:  Begin with the function 
$$ f(x)= \log(100-x) $$
and choose 
$$ x-values: 0  \rightarrow h^4  $$
so that 
   $$ \Delta x = h^4 - 0 = h^4 $$
$\Big($Recall that $ D\{ \log(g(x)) \} = \displaystyle{ 1 \over g(x) } \cdot g'(x) \cdot { 1 \over \ln(10) }. \Big)  $
The derivative of $ \ y=f(x) \ $ is
$$ f'(x)= \displaystyle{ 1 \over 100-x  } \cdot (-1) \cdot { 1 \over \ln(10) } $$
    $$ = \displaystyle{ -1 \over (-1)(x-100)  }  \cdot { 1 \over \ln(10) }   $$
        $$ = \displaystyle{ 1 \over x-100  }  \cdot { 1 \over \ln(10) }   $$
The exact change of $y-$values is
   $$ \Delta y = f(h^4) - f(0)  $$
   $$  = \log(100-(h^4)) - \log(100+(0)) $$
   $$  = \log(100-h^4) - \log(100) $$
$\Big($ Recall that $ \log(10^n)=n .\Big)$
   
  $$  = \log(100-h^4) - \log(10^2)  $$
    $$  = \log(100-h^4) - 2  $$
The Differential is
   $$ dy = f'(0) \ \Delta x  $$
   $$  = \displaystyle{ 1 \over ((0)^4) - 100 }  \cdot { 1 \over \ln(10) }  \cdot (h^4)  $$
   $$  = \displaystyle{ 1 \over -100 } \cdot { 1 \over \ln(10) } \cdot (h^4)  $$
   $$  = \displaystyle{ -1 \over 100 \ln(10) } h^4 $$
Since $h$ is "small" we will assume that
  $$ \Delta y \approx dy \ \ \ \ \longrightarrow $$
  $$  \log(100-h^4) - 2  \approx  \displaystyle{ -1 \over 100 \ln(10) } h^4 \ \ \ \ \longrightarrow  $$
  $$  \log(100-h^4)  \approx 2 - \displaystyle{ 1 \over 100 \ln(10) } h^4   $$
Click  HERE  to return to the list of problems.