SOLUTION 22: Consider a square of edge $x$. Then its perimeter is $$ P=x+x+x+x = 4x \ \ \ \ \longrightarrow \ \ \ \ P'=4 $$ and its area is $$ A= (length)(width) = x \cdot x = x^2 \ \ \ \ \longrightarrow \ \ \ \ A'=2x$$

tex2html_wrap_inline125


GIVEN: The absolute percentage error of $x$ is $$ \displaystyle{ |\Delta x| \over x } \le \ 3\% $$
$ \ \ \ \ $ a.) Use a Differential to estimate the absolute percentage error in perimter, i.e., estimate $ \ \displaystyle{ |\Delta P| \over P }. $ Then $$ \displaystyle{ |\Delta P| \over P } \approx { | dP| \over P } = { | P' \cdot \Delta x| \over P } = { | 4 \cdot \Delta x| \over 4x } = { | \cdot \Delta x| \over x } \le \ 3\% $$ i.e., $$ \displaystyle{ |\Delta P| \over P } \le \ 3\% $$
$ \ \ \ \ $ b.) Use a Differential to estimate the absolute percentage error in area, i.e., estimate $ \ \displaystyle{ |\Delta A| \over A }. $ Then $$ \displaystyle{ |\Delta A| \over A } \approx { | dA| \over A } = { | A' \cdot \Delta x| \over A } = { | 2x \cdot \Delta x| \over x^2 } = 2{ |\Delta x| \over x } \le \ 2 (3\%) = \ 6\% $$ i.e., $$ \displaystyle{ |\Delta A| \over A } \le \ 6\% $$

Click HERE to return to the list of problems.