SOLUTION 12: Draw a cube with edge length $x$, and assume that $x$ is a function of time $t$.

tex2html_wrap_inline125



The surface area (Add the areas of 6 square surfaces.) of a cube is

$$ S = x^2+x^2+x^2+x^2+x^2+x^2 \ \ \ \ \longrightarrow $$ $$ S=6x^2 $$

The volume of a cube is $$ V = (length)(width)(height) \ \ \ \ \longrightarrow $$ $$ V = x^3 $$

GIVEN: $ \ \ \ \displaystyle{ dS \over dt } = 600 \ in^2/hr. $

FIND: $ \ \ \ \displaystyle{ dV \over dt } $ when $ x =10 \ in. $

Now differentiate the surface area equation with respect to time $t $ getting

$$ D \{ S \} = D \{ 6x^2 \} \ \ \ \longrightarrow $$ $$ \displaystyle{ dS \over dt } = 6 \cdot 2x \displaystyle{ dx \over dt } \ \ \ \longrightarrow $$ $$ \displaystyle{ dS \over dt } = 12 x \displaystyle{ dx \over dt } \ \ \ \longrightarrow $$

$\Big($ Now let $\displaystyle{ dS \over dt } = 600 $ and $ x=10. \Big) $

$$ 600 = 12(10) \displaystyle{ dx \over dt } \ \ \ \longrightarrow $$ $$ \displaystyle{ dx \over dt } = 5 \ in/hr. $$

Now differentiate the volume equation with respect to time $t $ getting

$$ D \{ V \} = D \{ x^3 \} \ \ \ \longrightarrow $$ $$ \displaystyle{ dV \over dt } = 3 x^2 \displaystyle{ dx \over dt } \ \ \ \longrightarrow $$

$\Big($ Now let $\displaystyle{ dx \over dt } = 5$ and $x=10. \Big)$

$$ \displaystyle{ dV \over dt } = 3(10)^2(5) = 1500 \ \ in^3/hr. $$

Click HERE to return to the list of problems.