Using vertical cross-sections to describe this region, we get that $$ 0 \le x \le 4 \ \ and \ \ x \le y \le 2x $$ so that the area of this region is $$ AREA = \displaystyle{ \int_{0}^{4} (Top \ - \ Bottom) \ dx } $$ $$ = \displaystyle { \int_{0}^{4} (2x - x) \ dx } $$ $$ = \displaystyle { \int_{0}^{4} x \ dx } $$ $$ = \displaystyle { \frac{x^{2}}{2} \Big\vert_{0}^{4} } $$ $$ = \displaystyle { \frac{4^{2}}{2} - \frac{0^{2}}{2} } $$ $$ = \displaystyle { 8 - 0 } $$ $$ = \displaystyle { 8 } $$
Click HERE to return to the list of problems.