SOLUTION 6: Compute the area of the region enclosed by the graphs of the equations $ y=\ln x $, $ y=1 $ and $ x=e^{2} $ . Begin by finding the points of intersection of the two graphs. From $ y=\ln x $ and $ y=1 $ we get that $$ \ln x = 1 \ \ \longrightarrow \ \ \ x=e $$ Now see the given graph of the enclosed region.

tex2html_wrap_inline125

Using vertical cross-sections to describe this region, we get that $$ e \le x \le e^2 \ \ and \ \ 1 \le y \le \ln x , $$ so that the area of this region is $$ AREA = \displaystyle{ \int_{e}^{e^{2}} (Top \ - \ Bottom) \ dx } $$ $$ = \displaystyle { \int_{e}^{e^{2}} (\ln x - 1) \ dx } $$ $$ = \displaystyle { \int_{e}^{e^{2}} \ln x \ dx - \int_{e}^{e^{2}} 1 \ dx } $$ $\Big($For $ \displaystyle { \int \ln x \ dx } \ $ use Integration by Parts. Recall that the Integration by Parts Formula is $ \ \displaystyle { \int u \ dv = uv - \int v \ du } $ . Let $ \ u = \ln x \ $ and $ \ dv = dx \ $, so that $ \ du = \displaystyle{ 1 \over x } \ dx \ $ and $ \ v = x \ $. Then $ \displaystyle{ \int \ln x \ dx } = \displaystyle { x \ln x - \int \Big(\frac{1}{x}\Big)(x) \ dx } = \displaystyle { x \ln x - \int 1 \ dx } = \displaystyle { x \ln x - x + C } . \Big) $ $$ = \displaystyle { \Big( (x \ln x - x) - x \Big) \Big\vert_{e}^{e^{2}} } $$ $$ = \displaystyle { \Big( x \ln x - 2x \Big) \Big\vert_{e}^{e^{2}} } $$ $$ = \displaystyle { \Big( e^{2} \ln e^{2} - 2e^{2} \Big) - \Big( e \ln e - 2e \Big) } $$ $$ = \displaystyle { \Big( e^{2}(2) - 2e^{2} \Big) - \Big( e(1) - 2e \Big) } $$ $$ = \displaystyle { \Big( 0 \Big) - \Big( -e \Big) } $$ $$ = \displaystyle { e } $$

Click HERE to return to the list of problems.