Using vertical cross-sections to describe this region, we get that $$ 0 \le x \le \displaystyle \frac{\pi}{4} \ \ and \ \ \sin x \le y \le \cos x , $$ so that the area of this region is $$ AREA = \displaystyle{ \int_{0}^{\pi / 4} (Top \ - \ Bottom) \ dx } $$ $$ = \displaystyle { \int_{0}^{\pi / 4} ( \cos x - \sin x ) \ dx } $$ $$ = \displaystyle { \Big( \sin x - (-\cos x) \Big) \Big\vert_{0}^{\pi / 4} } $$ $$ = \displaystyle { \Big( \sin x + \cos x \Big) \Big\vert_{0}^{\pi / 4} } $$ $$ = \displaystyle { \Big( \sin \frac{\pi}{4} + \cos \frac{\pi}{4} \Big) - \Big( \sin 0 + \cos 0 \Big) } $$ $$ = \displaystyle { \Big( \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} \Big) - \Big( 0 + 1 \Big) } $$ $$ = \displaystyle { \sqrt{2} - 1 } $$
Click HERE to return to the list of problems.