Processing math: 100%


SOLUTION 9: Compute the area of the region enclosed by the graphs of the equations y=lnx and y=(lnx)2 . Begin by finding the points of intersection of the two graphs. From y=lnx and y=(lnx)2 we get that lnx=(lnx)2   lnx(lnx)2=0   lnx(1lnx)=0   lnx=0  or  lnx=1$$    x=1  or  x=e 2x=2    x=1 Now see the given graph of the enclosed region.

tex2html_wrap_inline125

Using vertical cross-sections to describe this region, we get that 1xe  and  (lnx)2ylnx, so that the area of this region is AREA=e1(Top  Bottom) dx =e1(lnx(lnx)2) dx =e1lnx dxe1(lnx)2 dx ( Use Integration by Parts for  (lnx)2 dx . Recall that the Integration by Parts Formula is  u dv=uvv du. Let  u=(lnx)2  and  dv=dx , so that  du=2lnx1x dx  and  v=x. Then (lnx)2 dx=x(lnx)22xlnx1x dx=x(lnx)22lnx dx Use Integration by Parts again. Let  u=lnx  and  dv=dx , so that  du=1x dx  and  v=x. Then x(lnx)22lnx dx=x(lnx)22[xlnxx1x dx]=x(lnx)22[xlnx1 dx]=x(lnx)22(xlnxx)+C=x(lnx)22xlnx+2x+C ) Continuing with the definite integral, we get that e1lnx dxe1(lnx)2 dx=((xlnxx)(x(lnx)22xlnx+2x))|e1 =(x(lnx)2+3xlnx3x))|e1 =(e(lne)2+3elne3e)((ln1)2+3ln13) =(e(1)2+3e(1)3e)((0)2+3(0)3) =(e)(3) =3e

Click HERE to return to the list of problems.