Processing math: 100%
SOLUTION 9: Compute the area of the
region enclosed by the graphs of the equations y=lnx and y=(lnx)2 . Begin by finding the points of intersection of the
two graphs. From y=lnx and y=(lnx)2 we get that
lnx=(lnx)2 ⟶
lnx−(lnx)2=0 ⟶
lnx(1−lnx)=0 ⟶
lnx=0 or lnx=1$$ ⟶ x=1 or x=e
2x=2 ⟶ x=1
Now see the given graph of the enclosed region.
Using vertical cross-sections to describe this region, we get that
1≤x≤e and (lnx)2≤y≤lnx,
so that the area of this region is
AREA=∫e1(Top − Bottom) dx
=∫e1(lnx−(lnx)2) dx
=∫e1lnx dx−∫e1(lnx)2 dx
( Use Integration by Parts for ∫(lnx)2 dx . Recall that the Integration by Parts Formula is
∫u dv=uv−∫v du. Let u=(lnx)2 and dv=dx , so that du=2lnx⋅1x dx and v=x. Then
∫(lnx)2 dx=x(lnx)2−∫2xlnx⋅1x dx=x(lnx)2−2∫lnx dx
Use Integration by Parts again. Let u=lnx and dv=dx , so that du=1x dx and v=x. Then
x(lnx)2−2∫lnx dx=x(lnx)2−2[xlnx−∫x⋅1x dx]=x(lnx)2−2[xlnx−∫1 dx]=x(lnx)2−2(xlnx−x)+C=x(lnx)2−2xlnx+2x+C )
Continuing with the definite integral, we get that
∫e1lnx dx−∫e1(lnx)2 dx=((xlnx−x)−(x(lnx)2−2xlnx+2x))|e1
=(−x(lnx)2+3xlnx−3x))|e1
=(−e(lne)2+3elne−3e)−(−(ln1)2+3ln1−3)
=(−e(1)2+3e(1)−3e)−(−(0)2+3(0)−3)
=(−e)−(−3)
=3−e
Click HERE to return to the list of problems.