SOLUTION 10: Compute the area of the enclosed region bounded by the graphs of the equations $ y = \tan^2 x $, $ y = 0 $, and $ x =1 $ . Now see the given graph of the enclosed region.

tex2html_wrap_inline125

Using vertical cross-sections to describe this region, we get that $$ 0 \le x \le 1 \ \ and \ \ 0 \le y \le \tan^2 x \ , $$ so that the area of this region is $$ AREA = \displaystyle{ \int_{0}^{1} (Top \ - \ Bottom) \ dx } $$ $$ = \displaystyle { \int_{0}^{1} (\tan^{2} x - 0) \ dx } $$ $$ = \displaystyle { \int_{0}^{1} \tan^{2} x \ dx } $$ (Recall that $ 1 + \tan^2 x = \sec^2 x $, so that $ \tan^2 x = \sec^2 x - 1 $.) $$ = \displaystyle { \int_{0}^{1} ( \sec^{2} x - 1 ) \ dx } $$ $$ = \displaystyle { ( \tan x - x ) \Big\vert_{0}^{1} } $$ $$ = \displaystyle { ( \tan 1 - 1) - ( \tan 0 - 0 ) } $$ $$ = \displaystyle { ( \tan 1 - 1) - ( 0 - 0 ) } $$ $$ = \displaystyle { \tan 1 - 1 } $$

Click HERE to return to the list of problems.