Using vertical cross-sections to describe this region, which is made up of two smaller regions, we get that $$ 0 \le x \le \displaystyle\frac{\pi}{3} \ \ and \ \ \sin x \le y \le \sin 2x $$ in addition to $$ \displaystyle\frac{\pi}{3} \le x \le \pi \ \ and \ \ \sin 2x \le y \le \sin x \ , $$ so that the area of this region is $$ AREA = \displaystyle{ \int_{0}^{\pi/3} (Top \ - \ Bottom) \ dx + \int_{\pi/3}^{\pi} (Top \ - \ Bottom) \ dx } $$ $$ = \displaystyle { \int_{0}^{\pi/3} \Big( \sin 2x - \sin x \Big) \ dx + \int_{\pi/3}^{\pi} \Big( \sin x - \sin 2x \Big) \ dx } $$ $$ = \displaystyle { \Big( - \frac{1}{2} \cos 2x - \Big( - \cos x \Big) \Big) \Big\vert_{0}^{\pi/3} + \Big( - \cos x - \Big( -\frac{1}{2} \cos 2x \Big) \Big) \Big\vert_{\pi/3}^{\pi} } $$ $$ = \displaystyle { \Big( \Big( - \frac{1}{2} \cos \frac{2\pi}{3} + \cos \frac{\pi}{3} \Big) - \Big( - \frac{1}{2} \cos 0 + \cos 0 \Big) \Big) + \Big( \Big( - \cos \pi + \frac{1}{2} \cos 2\pi \Big) - \Big( - \cos \frac{\pi}{3} + \frac{1}{2} \cos \frac{\pi}{3} \Big) \Big) } $$ $$ = \displaystyle { \Big( \Big( - \frac{1}{2} \Big( -\frac{1}{2} \Big) + \frac{1}{2} \Big) - \Big( - \frac{1}{2} \Big( 1 \Big) + 1 \Big) \Big) + \Big( \Big( - \Big( -1 \Big) + \frac{1}{2} \Big( 1 \Big) \Big) - \Big( - \frac{1}{2} + \frac{1}{2} \Big( \frac{1}{2} \Big) \Big) \Big) } $$ $$ = \displaystyle { \Big( \frac{1}{4} + \frac{1}{2} + \frac{1}{2} - 1 \Big) + \Big( 1 + \frac{1}{2} + \frac{1}{2} - \frac{1}{4} \Big) } $$ $$ = 2 $$
Click HERE to return to the list of problems.