Using vertical cross-sections to describe this region, which is made up of three smaller regions, we get that $$ 0 \le x \le 1 \ \ and \ \ 0 \le y \le 2x $$ in addition to $$ 1 \le x \le 8 \ \ and \ \ 0 \le y \le 2 \ , $$ and $$ 8 \le x \le 12 \ \ and \ \ \displaystyle \frac{1}{2}x-4 \le y \le 2 \ , $$ so that the area of this region is $$ AREA = \displaystyle{ \int_{0}^{1} (Top \ - \ Bottom) \ dx + \int_{1}^{8} (Top \ - \ Bottom) \ dx + \int_{8}^{12} ( Top \ - \ Bottom ) \ dx } $$ $$ = \displaystyle{ \int_{0}^{1} (2x - 0) \ dx + \int_{1}^{8} (2 - 0) \ dx + \int_{8}^{12} \Big( 2 - \Big( \frac{1}{2}x-4 \Big) \Big) \ dx } $$ $$ = \displaystyle{ \int_{0}^{1} 2x \ dx + \int_{1}^{8} 2 \ dx + \int_{8}^{12} \Big( 6 - \frac{1}{2}x \Big) \ dx } $$ $$ = \displaystyle { ( x^2 ) \Big\vert_{0}^{1} + (2x) \Big\vert_{1}^{8} + \Big(6x - \frac{1}{4}x^2 \Big) \Big\vert_{8}^{12} } $$ $$ = \displaystyle { ( (1)^2-(0)^2) + (2(8)-2(1)) + \Big( \Big( 6(12) - \frac{1}{4}(12)^2 \Big) - \Big( 6(8) - \frac{1}{4}(8)^2 \Big) \Big) } $$ $$ = \displaystyle { (1) + (14) + (36-32) } $$ $$ = 19 $$
Click HERE to return to the list of problems.