SOLUTION 21: Compute the area of the region enclosed by the graphs of the equations $ y=\tan x, y=x,$
and $ y=3 $ . Begin by finding the points of intersection of the two graphs.  From $ \displaystyle y= \tan x $ and $ y=x $
 we get that
$$ \tan x = x \ \ \longrightarrow  \ \ x=0 $$
Now see the given graph of the enclosed region.
 
Using horizontal cross-sections to describe this region, we get that
$$ 0 \le y \le 3 \ \ and \ \ \arctan y \le x \le y  \ , $$ 
so that the area of this region is
$$ AREA = \displaystyle{ \int_{0}^{3} (Right \ - \ Left) \ dy  } $$
$$ = \displaystyle { \int_{0}^{3} ( y - \arctan y ) \ dy  } $$
Use Integration by Parts for $ \displaystyle{ \int \arctan y \ dy } $. Recall that the Integration by Parts formula is $ \displaystyle{ \int u \ dv = uv - \int v \ du } $.  Let $ u=\arctan y $ and $ dv=dy $, so that $ du = \displaystyle \frac{1}{y^2+1} $ and $ v=y $. Then
$$ \displaystyle { \int \arctan y  \ dy   = y \arctan y - \int y \cdot \frac{ 1 }{ y^2+1 } \ dy } $$
$$ \displaystyle {  = y \arctan y - \int  \frac{ y }{ y^2+1 } \ dy } $$
(Now use a simple u-substitution:  Let $ u=y^2+1 \ \ \longrightarrow \ \ du = 2y \ dy \ \ \longrightarrow \ \ \displaystyle{ \frac{1}{2} du = y \ dy } $ . )
$$ \displaystyle {  = y \arctan y - \frac{1}{2} \int  \frac{1}{u} \ du } $$
$$ \displaystyle {  = y \arctan y - \frac{1}{2} \ln|u| + C } $$
$$ \displaystyle {  = y \arctan y -  \frac{1}{2} \ln (y^2+1) + C  } $$
Continuing with the definite integral we get that
$$  \displaystyle { \int_{0}^{3} ( y - \arctan y ) \ dy   
      =  \Big( \frac{y^2}{2} - \Big( y \arctan y - \frac{1}{2} \ln(y^2+1) \Big) \Big) \Big\vert_{0}^{3}  } $$
$$   = \displaystyle{  \Big( \frac{y^2}{2} -  y \arctan y + \frac{1}{2} \ln(y^2+1)  \Big) \Big\vert_{0}^{3}  } $$
$$   =  \displaystyle{ \Big( \frac{(3)^2}{2} -  (3) \arctan (3) + \frac{1}{2} \ln((3)^2+1)  \Big) }
    -  \Big( \frac{(0)^2}{2} -  (0) \arctan (0) + \frac{1}{2} \ln((0)^2+1)  \Big)   $$
$$   =  \displaystyle{  \frac{9}{2} -  3 \arctan 3 + \frac{1}{2} \ln 10 
    -  (0) +  (0)  - \frac{1}{2} \ln 1  \Big)  } $$
$$   =  \displaystyle{  \frac{9}{2} -  3 \arctan 3 + \frac{1}{2} \ln 10  - \frac{1}{2}(0) }  $$
$$   =  \displaystyle{  \frac{9}{2} -  3 \arctan 3 + \frac{1}{2} \ln 10   }  $$
Click  HERE  to return to the list of problems.