SOLUTION 22: Compute the area of the region enclosed by the graphs of the equations $ y=2x, y= \displaystyle{ \frac{1}{2} }x-4, y=0, $
and $ y=2 $ . Now see the given graph of the enclosed region.
 
Using horizontal cross-sections to describe this region, we get that
$$ 0 \le y \le 2 \ \ and \ \ \displaystyle{ \frac{1}{2}y  } \le x \le 2y+8  \ , $$ 
so that the area of this region is
$$ AREA = \displaystyle{ \int_{0}^{2} (Right \ - \ Left) \ dy  } $$
$$ = \displaystyle { \int_{0}^{2} \Big( (2y+8) - \frac{1}{2}y \Big) \ dy  } $$
$$  \displaystyle { =  \Big( y^2+8y - \frac{y^2}{4}  \Big) \Big\vert_{0}^{2}  } $$
$$  \displaystyle { =  \Big( (2)^2 + 8(2) - \frac{(2)^2}{4}  \Big) - \Big( (0)^2+8(0) - \frac{(0)^2}{4}  \Big)     } $$
$$ =  19 $$
Click  HERE  to return to the list of problems.