SOLUTION 23: Compute the area of the region enclosed by the graphs of the equations $ y=x, y=3x, $
and $ x=2 $ . Now see the given graph of the enclosed region.
 
a.)  Using vertical cross-sections to describe this region, we get that
$$ 0 \le x \le 2 \ \ and \ \ x \le y \le 3x  \ , $$ 
so that the area of this region is
$$ AREA = \displaystyle{ \int_{0}^{2} (Top \ - \ Bottom) \ dx  } $$
$$ = \displaystyle { \int_{0}^{2} ( 3x - x ) \ dx  } $$
$$ = \displaystyle { \int_{0}^{2} 2x \ dx  } $$
$$  \displaystyle { =  (x^2) \Big\vert_{0}^{2}  } $$
$$  \displaystyle { =  (2)^2 - (0)^2   } $$
$$ =  4 $$
b.)  Using horizontal cross-sections to describe this region, which is made up of two smaller regions, we get that
$$ 0 \le y \le 2 \ \ and \ \ \displaystyle{ \frac{1}{3}y  } \le x \le y $$
in addition to
$$ 2 \le y \le 6 \ \ and \ \ \displaystyle{ \frac{1}{3}y  } \le x \le 2 \ , $$
so that the area of this region is
$$ AREA = \displaystyle{ \int_{0}^{2} ( Right \ - \ Left ) \ dx  + \int_{2}^{6} ( Right \ - \ Left ) \ dx }  $$
$$  = \displaystyle{ \int_{0}^{2} \Big( y - \frac{1}{3}y   \Big) \ dy  + \int_{2}^{6} \Big( 2 - \frac{1}{3}y  \Big) \ dy }  $$
$$  = \displaystyle{ \int_{0}^{2} \Big( \frac{2}{3}y   \Big) \ dy  + \int_{2}^{6} \Big( 2 - \frac{1}{3}y  \Big) \ dy }  $$
$$  \displaystyle { =  \Big( \frac{y^2}{3} \Big) \Big\vert_{0}^{2}  
    +  \Big( 2y - \frac{y^2}{6}  \Big) \Big\vert_{2}^{6}  } $$
$$  \displaystyle { =  \Big( \frac{(2)^2}{3} - \frac{(0)^2}{3} \Big)  
    + \Big( \Big( 2(6) - \frac{(6)^2}{6}  \Big) - \Big( 2(2) - \frac{(2)^2}{6}  \Big) \Big)   } $$
$$  \displaystyle { =  \Big( \frac{4}{3} \Big)  
    +  \Big( 6 \Big) - \Big( 4 - \frac{2}{3}  \Big)   } $$
$$ = 4 $$
Click  HERE  to return to the list of problems.