Processing math: 100%


SOLUTION 28: Compute the area of the region enclosed by the graphs of the equations y=x3  (or  x=y1/3), y=x+6  (or  x=y6), y=2x6  (or  x=12y+3), and y=0 . Begin by finding the points of intersection of the the four graphs. From y=x3 and y=0 we get that x3=0    x=0 From y=x3 and y=x+6 we get that x3=x+6    x=2 From y=x+6 and y=2x6 we get that x+6=2x6    x=12 From y=2x6 and y=0 we get that 2x6=0   2x=6    x=3 Now see the given graph of the enclosed region.

tex2html_wrap_inline125

a.) Using vertical cross-sections to describe this region, which is made up of three smaller regions, we get that 0x2  and  0yx3  in addition to 2x3  and  0yx+6 , and 3x12  and  2x6yx+6 , so that the area of this region is AREA=20(Top Bottom ) dx+32(Top  Bottom) dx+123(Top Bottom ) dx =20(x30) dx+32((x+6)0) dx+123((x+6)(2x6)) dx =20x3 dx+32(x+6) dx+123(12x)) dx =(x44)|20+(x22+6x)|32+(12xx22)|123 =((2)44(0)44)+(((3)22+6(3))((2)22+6(2)))+((12(12)(12)22)(12(3)(3)22)) =(4)+(92+18)(14)+(72)(3692) =53 b.) Using horizontal cross-sections to describe this region, which is made up of two smaller regions, we get that 0y8  and  y1/3x12y+3 , in addition to 8y18  and  y6x12y+3 , so that the area of this region is AREA=80(Right  Left) dy+188(Right  Left) dy =80((12y+3)(y1/3)) dy+188((12y+3)(y6)) dy =80(12y+3y1/3) dy+188(912y) dy =(y24+3y34y4/3)|80+(9yy24)|188 =(((8)24+3(8)34(8)4/3)((0)24+3(0)34(0)4/3))+((9(18)(18)24)(9(8)(8)24)) =(28)(0)+(81)(56) =53

Click HERE to return to the list of problems.