next up previous
Next: Exercises Up: MarkovChain_9_18 Previous: Markov Chains

Regular Markov Chain

An square matrix $A$ is called regular if for some integer $n$ all entries of $ A^n $ are positive.

Example

The matrix

\begin{displaymath}A = \left[ \begin{array}{rr}
0&1\\
1&0\\
\end{array}
\right]\end{displaymath}

is not a regular matrix, because for all positive integer $n$,


\begin{displaymath}A^{2n} = \left[ \begin{array}{rr}
1&0\\
0&1\\
\end{arra...
...\left[ \begin{array}{rr}
0&1\\
1&0\\
\end{array}
\right]\end{displaymath}

The matrix $A =\left[ \begin{array}{rrrrr}
.25&.20&.25&.30 \\
.20&.30&.25&.30 \\
.25&.20&.40&.10 \\
.30&.30&.10&.30 \\
\end{array} \right[
$

is a regular matrix, because $A^1 $ has all positive entries.

It can also be shown that all other eigenvalues of A are less than 1, and algebraic multiplicity of 1 is one.

It can be shown that if $A$ is a regular matrix then $ A^n $ approaches to a matrix $ Q $ whose columns are all equal to a probability vector $ q $ which is called the steady-state vector of the regular Markov chain.




\begin{displaymath}\mbox{ if } A \mbox{ regular, then } A^n \rightarrow Q = \lef...
...&&.\\
.&.&&&&.\\
q_k&q_k&.&.&.&q_k\\
\end{array}
\right]\end{displaymath}



where $q_{1} + q_{2} + \dots + q_{k} = 1$.

It can be shown that for any probability vector $x^{(0) }$ when $n$ gets large, $A^n x^{(0)}$ approaches to the steady-state vector


\begin{displaymath}{\bf q } = \left[ \begin{array}{r}
q_1\\
q_2\\
\vdots \\
q_k\\
\end{array}
\right]\end{displaymath}

.



That is


\begin{displaymath}A^n x^{(0)} \longrightarrow q=\left[ \begin{array}{r}
q_1\\
q_2\\
.\\
.\\
.\\
q_k\\
\end{array}
\right]\end{displaymath}



where $q_{1} + q_{2} + \dots + q_{k} = 1$.

It can also be shown that the steady-state vector q is the only vector such that


\begin{displaymath}Aq = q\end{displaymath}

Note that this shows q is an eigenvector of A and $ 1$ is eigenvalue of A.



Subsections
next up previous
Next: Exercises Up: MarkovChain_9_18 Previous: Markov Chains
Ali A. Daddel 2000-09-18